Siegel, R. L., Miller, K. D., Wagle, N. S., & Jemal, A. (2023). Cancer statistics, 2023. CA: a Cancer Journal for Clinicians, 73(1), 17–48.
Amin, M. B., Greene, F. L., Edge, S. B., Compton, C. C., Gershenwald, J. E., Brookland, R. K., et al. (2017). The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging. CA: a Cancer Journal for Clinicians, 67(2), 93–99.
Valastyan, S., & Weinberg, R. A. (2011). Tumor metastasis: molecular insights and evolving paradigms. Cell., 147(2), 275–292.
Article CAS PubMed Google Scholar
Kristensen, L. S., Andersen, M. S., Stagsted, L. V. W., Ebbesen, K. K., Hansen, T. B., & Kjems, J. (2019). The biogenesis, biology and characterization of circular RNAs. Nature Reviews Genetics, 20(11), 675–691.
Article CAS PubMed Google Scholar
Pisignano, G., Michael, D. C., Visal, T. H., Pirlog, R., Ladomery, M., & Calin, G. A. (2023). Going circular: history, present, and future of circRNAs in cancer. Oncogene, 42.
Sanger, H. L., Klotz, G., Riesner, D., Gross, H. J., & Kleinschmidt, A. K. (1976). Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proceedings of the National Academy of Sciences of the United States of America, 73(11), 3852–3856.
Article CAS PubMed Google Scholar
Memczak, S., Jens, M., Elefsinioti, A., Torti, F., Krueger, J., Rybak, A., et al. (2013). Circular RNAs are a large class of animal RNAs with regulatory potency. Nature., 495(7441), 333–338.
Article CAS PubMed Google Scholar
Li, X., Ding, J., Wang, X., Cheng, Z., & Zhu, Q. (2020). NUDT21 regulates circRNA cyclization and ceRNA crosstalk in hepatocellular carcinoma. Oncogene., 39(4), 891–904.
Zeng, Z., Xia, L., Fan, S., Zheng, J., Qin, J., Fan, X., et al. (2021). Circular RNA CircMAP3K5 acts as a microRNA-22-3p sponge to promote resolution of intimal hyperplasia Via TET2-mediated smooth muscle cell differentiation. Circulation., 143(4), 354–371.
Article CAS PubMed Google Scholar
van Zonneveld, A. J., Kölling, M., Bijkerk, R., & Lorenzen, J. M. (2021). Circular RNAs in kidney disease and cancer. Nature Reviews Nephrology, 17(12), 814–826.
Zhou, Z., Sun, B., Huang, S., & Zhao, L. (2019). Roles of circular RNAs in immune regulation and autoimmune diseases. Cell Death & Disease, 10(7), 503.
Wang, Y., Zhang, Y., Wang, P., Fu, X., & Lin, W. (2020). Circular RNAs in renal cell carcinoma: implications for tumorigenesis, diagnosis, and therapy. Molecular Cancer, 19(1), 149.
Article CAS PubMed PubMed Central Google Scholar
Yang, X., Ye, T., Liu, H., Lv, P., Duan, C., Wu, X., et al. (2021). Expression profiles, biological functions and clinical significance of circRNAs in bladder cancer. Molecular Cancer, 20(1), 4.
Article CAS PubMed Google Scholar
Hua, J. T., Chen, S., & He, H. H. (2019). Landscape of noncoding RNA in prostate cancer. Trends in Genetics : TIG, 35(11), 840–851.
Article CAS PubMed Google Scholar
Goodall, G. J., & Wickramasinghe, V. O. (2021). RNA in cancer. Nature Reviews Cancer, 21(1), 22–36.
Article CAS PubMed Google Scholar
Li, X., Yang, L., & Chen, L. L. (2018). The biogenesis, functions, and challenges of circular RNAs. Molecular Cell, 71(3), 428–442.
Article CAS PubMed Google Scholar
Zhang, Y., Zhang, X. O., Chen, T., Xiang, J. F., Yin, Q. F., Xing, Y. H., et al. (2013). Circular intronic long noncoding RNAs. Molecular Cell, 51(6), 792–806.
Article CAS PubMed Google Scholar
Li, Z., Huang, C., Bao, C., Chen, L., Lin, M., Wang, X., et al. (2017). Corrigendum: Exon-intron circular RNAs regulate transcription in the nucleus. Nature Structural & Molecular Biology, 24(2), 194.
Lu, Z., Filonov, G. S., Noto, J. J., Schmidt, C. A., Hatkevich, T. L., Wen, Y., et al. (2015). Metazoan tRNA introns generate stable circular RNAs in vivo. RNA (New York, NY)., 21(9), 1554–1565.
Hansen, T. B., Jensen, T. I., Clausen, B. H., Bramsen, J. B., Finsen, B., Damgaard, C. K., et al. (2013). Natural RNA circles function as efficient microRNA sponges. Nature, 495(7441), 384–388.
Article CAS PubMed Google Scholar
Okholm, T. L. H., Sathe, S., Park, S. S., Kamstrup, A. B., Rasmussen, A. M., Shankar, A., et al. (2020). Transcriptome-wide profiles of circular RNA and RNA-binding protein interactions reveal effects on circular RNA biogenesis and cancer pathway expression. Genome Medicine, 12(1), 112.
Article CAS PubMed PubMed Central Google Scholar
Xie, F., Xiao, X., Tao, D., Huang, C., Wang, L., Liu, F., et al. (2020). circNR3C1 suppresses bladder cancer progression through acting as an endogenous blocker of BRD4/C-myc complex. Molecular Therapy--Nucleic Acids, 22, 510–519.
Article CAS PubMed PubMed Central Google Scholar
Li, Z., Huang, C., Bao, C., Chen, L., Lin, M., Wang, X., et al. (2015). Exon-intron circular RNAs regulate transcription in the nucleus. Nature Structural & Molecular Biology, 22(3), 256–264.
Chen, C. Y., & Sarnow, P. (1995). Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs. Science (New York, N.Y.), 268(5209), 415–417.
Article CAS PubMed Google Scholar
Hogg, S. J., Beavis, P. A., Dawson, M. A., & Johnstone, R. W. (2020). Targeting the epigenetic regulation of antitumour immunity. Nature Reviews Drug Discovery, 19(11), 776–800.
Article CAS PubMed Google Scholar
Weigel, C., Veldwijk, M. R., Oakes, C. C., Seibold, P., Slynko, A., Liesenfeld, D. B., et al. (2016). Epigenetic regulation of diacylglycerol kinase alpha promotes radiation-induced fibrosis. Nature Communications, 7, 10893.
Article CAS PubMed PubMed Central Google Scholar
Pietri, E., Conteduca, V., Andreis, D., Massa, I., Melegari, E., Sarti, S., et al. (2016). Androgen receptor signaling pathways as a target for breast cancer treatment. Endocrine-Related Cancer, 23(10), R485–R498.
Article CAS PubMed Google Scholar
Yin, J., Liu, Y. N., Tillman, H., Barrett, B., Hewitt, S., Ylaya, K., et al. (2014). AR-regulated TWEAK-FN14 pathway promotes prostate cancer bone metastasis. Cancer Research, 74(16), 4306–4317.
Article CAS PubMed PubMed Central Google Scholar
Yang, L., Huang, W., Bai, X., Wang, H., Wang, X., Xiao, H., et al. (2023). Androgen dihydrotestosterone promotes bladder cancer cell proliferation and invasion via EPPK1-mediated MAPK/JUP signalling. Cell Death & Disease, 14(6), 363.
Deng, G., Wang, R., Sun, Y., Huang, C. P., Yeh, S., You, B., et al. (2021). Targeting androgen receptor (AR) with antiandrogen Enzalutamide increases prostate cancer cell invasion yet decreases bladder cancer cell invasion via differentially altering the AR/circRNA-ARC1/miR-125b-2-3p or miR-4736/PPARγ/MMP-9 signals. Cell Death and Differentiation, 28(7), 2145–2159.
Article CAS PubMed PubMed Central Google Scholar
Chen, J., Sun, Y., Ou, Z., Yeh, S., Huang, C. P., You, B., et al. (2020). Androgen receptor-regulated circFNTA activates KRAS signaling to promote bladder cancer invasion. EMBO Reports, 21(4), e48467.
Article CAS PubMed PubMed Central Google Scholar
Yang, Z., Qu, C. B., Zhang, Y., Zhang, W. F., Wang, D. D., Gao, C. C., et al. (2019). Dysregulation of p53-RBM25-mediated circAMOTL1L biogenesis contributes to prostate cancer progression through the circAMOTL1L-miR-193a-5p-Pcdha pathway. Oncogene, 38(14), 2516–2532.
Article CAS PubMed Google Scholar
Kim, T. K., & Shiekhattar, R. (2015). Architectural and functional commonalities between enhancers and promoters. Cell, 162(5), 948–959.
Article CAS PubMed PubMed Central Google Scholar
Chen, W., Cen, S., Zhou, X., Yang, T., Wu, K., Zou, L., et al. (2020). Circular RNA CircNOLC1, upregulated by NF-KappaB, promotes the progression of prostate cancer via miR-647/PAQR4 Axis. Frontiers in Cell and Development Biology, 8, 624764.
Han, Z., Zhang, Y., Sun, Y., Chen, J., Chang, C., Wang, X., et al. (2018). ERβ-mediated alteration of circATP2B1 and miR-204-3p signaling promotes invasion of clear cell renal cell carcinoma. Cancer Research, 78(10), 2550–2563.
Article CAS PubMed Google Scholar
Gupta, G. P., & Massagué, J. (2006). Cancer metastasis: building a framework. Cell., 127(4), 679–695.
Article CAS PubMed Google Scholar
Vanharanta, S., & Massagué, J. (2013). Origins of metastatic traits. Cancer Cell, 24(4), 410–421.
留言 (0)