The role of circular RNA during the urological cancer metastasis: exploring regulatory mechanisms and potential therapeutic targets

Siegel, R. L., Miller, K. D., Wagle, N. S., & Jemal, A. (2023). Cancer statistics, 2023. CA: a Cancer Journal for Clinicians, 73(1), 17–48.

PubMed  Google Scholar 

Amin, M. B., Greene, F. L., Edge, S. B., Compton, C. C., Gershenwald, J. E., Brookland, R. K., et al. (2017). The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging. CA: a Cancer Journal for Clinicians, 67(2), 93–99.

PubMed  Google Scholar 

Valastyan, S., & Weinberg, R. A. (2011). Tumor metastasis: molecular insights and evolving paradigms. Cell., 147(2), 275–292.

Article  CAS  PubMed  Google Scholar 

Kristensen, L. S., Andersen, M. S., Stagsted, L. V. W., Ebbesen, K. K., Hansen, T. B., & Kjems, J. (2019). The biogenesis, biology and characterization of circular RNAs. Nature Reviews Genetics, 20(11), 675–691.

Article  CAS  PubMed  Google Scholar 

Pisignano, G., Michael, D. C., Visal, T. H., Pirlog, R., Ladomery, M., & Calin, G. A. (2023). Going circular: history, present, and future of circRNAs in cancer. Oncogene, 42.

Sanger, H. L., Klotz, G., Riesner, D., Gross, H. J., & Kleinschmidt, A. K. (1976). Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proceedings of the National Academy of Sciences of the United States of America, 73(11), 3852–3856.

Article  CAS  PubMed  Google Scholar 

Memczak, S., Jens, M., Elefsinioti, A., Torti, F., Krueger, J., Rybak, A., et al. (2013). Circular RNAs are a large class of animal RNAs with regulatory potency. Nature., 495(7441), 333–338.

Article  CAS  PubMed  Google Scholar 

Li, X., Ding, J., Wang, X., Cheng, Z., & Zhu, Q. (2020). NUDT21 regulates circRNA cyclization and ceRNA crosstalk in hepatocellular carcinoma. Oncogene., 39(4), 891–904.

Article  PubMed  Google Scholar 

Zeng, Z., Xia, L., Fan, S., Zheng, J., Qin, J., Fan, X., et al. (2021). Circular RNA CircMAP3K5 acts as a microRNA-22-3p sponge to promote resolution of intimal hyperplasia Via TET2-mediated smooth muscle cell differentiation. Circulation., 143(4), 354–371.

Article  CAS  PubMed  Google Scholar 

van Zonneveld, A. J., Kölling, M., Bijkerk, R., & Lorenzen, J. M. (2021). Circular RNAs in kidney disease and cancer. Nature Reviews Nephrology, 17(12), 814–826.

Article  PubMed  Google Scholar 

Zhou, Z., Sun, B., Huang, S., & Zhao, L. (2019). Roles of circular RNAs in immune regulation and autoimmune diseases. Cell Death & Disease, 10(7), 503.

Article  Google Scholar 

Wang, Y., Zhang, Y., Wang, P., Fu, X., & Lin, W. (2020). Circular RNAs in renal cell carcinoma: implications for tumorigenesis, diagnosis, and therapy. Molecular Cancer, 19(1), 149.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang, X., Ye, T., Liu, H., Lv, P., Duan, C., Wu, X., et al. (2021). Expression profiles, biological functions and clinical significance of circRNAs in bladder cancer. Molecular Cancer, 20(1), 4.

Article  CAS  PubMed  Google Scholar 

Hua, J. T., Chen, S., & He, H. H. (2019). Landscape of noncoding RNA in prostate cancer. Trends in Genetics : TIG, 35(11), 840–851.

Article  CAS  PubMed  Google Scholar 

Goodall, G. J., & Wickramasinghe, V. O. (2021). RNA in cancer. Nature Reviews Cancer, 21(1), 22–36.

Article  CAS  PubMed  Google Scholar 

Li, X., Yang, L., & Chen, L. L. (2018). The biogenesis, functions, and challenges of circular RNAs. Molecular Cell, 71(3), 428–442.

Article  CAS  PubMed  Google Scholar 

Zhang, Y., Zhang, X. O., Chen, T., Xiang, J. F., Yin, Q. F., Xing, Y. H., et al. (2013). Circular intronic long noncoding RNAs. Molecular Cell, 51(6), 792–806.

Article  CAS  PubMed  Google Scholar 

Li, Z., Huang, C., Bao, C., Chen, L., Lin, M., Wang, X., et al. (2017). Corrigendum: Exon-intron circular RNAs regulate transcription in the nucleus. Nature Structural & Molecular Biology, 24(2), 194.

Article  CAS  Google Scholar 

Lu, Z., Filonov, G. S., Noto, J. J., Schmidt, C. A., Hatkevich, T. L., Wen, Y., et al. (2015). Metazoan tRNA introns generate stable circular RNAs in vivo. RNA (New York, NY)., 21(9), 1554–1565.

Article  CAS  Google Scholar 

Hansen, T. B., Jensen, T. I., Clausen, B. H., Bramsen, J. B., Finsen, B., Damgaard, C. K., et al. (2013). Natural RNA circles function as efficient microRNA sponges. Nature, 495(7441), 384–388.

Article  CAS  PubMed  Google Scholar 

Okholm, T. L. H., Sathe, S., Park, S. S., Kamstrup, A. B., Rasmussen, A. M., Shankar, A., et al. (2020). Transcriptome-wide profiles of circular RNA and RNA-binding protein interactions reveal effects on circular RNA biogenesis and cancer pathway expression. Genome Medicine, 12(1), 112.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xie, F., Xiao, X., Tao, D., Huang, C., Wang, L., Liu, F., et al. (2020). circNR3C1 suppresses bladder cancer progression through acting as an endogenous blocker of BRD4/C-myc complex. Molecular Therapy--Nucleic Acids, 22, 510–519.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, Z., Huang, C., Bao, C., Chen, L., Lin, M., Wang, X., et al. (2015). Exon-intron circular RNAs regulate transcription in the nucleus. Nature Structural & Molecular Biology, 22(3), 256–264.

Article  Google Scholar 

Chen, C. Y., & Sarnow, P. (1995). Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs. Science (New York, N.Y.), 268(5209), 415–417.

Article  CAS  PubMed  Google Scholar 

Hogg, S. J., Beavis, P. A., Dawson, M. A., & Johnstone, R. W. (2020). Targeting the epigenetic regulation of antitumour immunity. Nature Reviews Drug Discovery, 19(11), 776–800.

Article  CAS  PubMed  Google Scholar 

Weigel, C., Veldwijk, M. R., Oakes, C. C., Seibold, P., Slynko, A., Liesenfeld, D. B., et al. (2016). Epigenetic regulation of diacylglycerol kinase alpha promotes radiation-induced fibrosis. Nature Communications, 7, 10893.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pietri, E., Conteduca, V., Andreis, D., Massa, I., Melegari, E., Sarti, S., et al. (2016). Androgen receptor signaling pathways as a target for breast cancer treatment. Endocrine-Related Cancer, 23(10), R485–R498.

Article  CAS  PubMed  Google Scholar 

Yin, J., Liu, Y. N., Tillman, H., Barrett, B., Hewitt, S., Ylaya, K., et al. (2014). AR-regulated TWEAK-FN14 pathway promotes prostate cancer bone metastasis. Cancer Research, 74(16), 4306–4317.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang, L., Huang, W., Bai, X., Wang, H., Wang, X., Xiao, H., et al. (2023). Androgen dihydrotestosterone promotes bladder cancer cell proliferation and invasion via EPPK1-mediated MAPK/JUP signalling. Cell Death & Disease, 14(6), 363.

Article  CAS  Google Scholar 

Deng, G., Wang, R., Sun, Y., Huang, C. P., Yeh, S., You, B., et al. (2021). Targeting androgen receptor (AR) with antiandrogen Enzalutamide increases prostate cancer cell invasion yet decreases bladder cancer cell invasion via differentially altering the AR/circRNA-ARC1/miR-125b-2-3p or miR-4736/PPARγ/MMP-9 signals. Cell Death and Differentiation, 28(7), 2145–2159.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, J., Sun, Y., Ou, Z., Yeh, S., Huang, C. P., You, B., et al. (2020). Androgen receptor-regulated circFNTA activates KRAS signaling to promote bladder cancer invasion. EMBO Reports, 21(4), e48467.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang, Z., Qu, C. B., Zhang, Y., Zhang, W. F., Wang, D. D., Gao, C. C., et al. (2019). Dysregulation of p53-RBM25-mediated circAMOTL1L biogenesis contributes to prostate cancer progression through the circAMOTL1L-miR-193a-5p-Pcdha pathway. Oncogene, 38(14), 2516–2532.

Article  CAS  PubMed  Google Scholar 

Kim, T. K., & Shiekhattar, R. (2015). Architectural and functional commonalities between enhancers and promoters. Cell, 162(5), 948–959.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, W., Cen, S., Zhou, X., Yang, T., Wu, K., Zou, L., et al. (2020). Circular RNA CircNOLC1, upregulated by NF-KappaB, promotes the progression of prostate cancer via miR-647/PAQR4 Axis. Frontiers in Cell and Development Biology, 8, 624764.

Article  Google Scholar 

Han, Z., Zhang, Y., Sun, Y., Chen, J., Chang, C., Wang, X., et al. (2018). ERβ-mediated alteration of circATP2B1 and miR-204-3p signaling promotes invasion of clear cell renal cell carcinoma. Cancer Research, 78(10), 2550–2563.

Article  CAS  PubMed  Google Scholar 

Gupta, G. P., & Massagué, J. (2006). Cancer metastasis: building a framework. Cell., 127(4), 679–695.

Article  CAS  PubMed  Google Scholar 

Vanharanta, S., & Massagué, J. (2013). Origins of metastatic traits. Cancer Cell, 24(4), 410–421.

Article  CAS  PubMed  PubMed Central  Goo

留言 (0)

沒有登入
gif