Szentmihalyi K (2019) Metal element homeostasis and oxidative stress in pathological processes. Orv Hetil 160(36):1407–1416. https://doi.org/10.1556/650.2019.31499
Valko M et al (2016) Redox- and non-redox-metal-induced formation of free radicals and their role in human Disease. Arch Toxicol 90(1):1–37. https://doi.org/10.1007/s00204-015-1579-5
Article CAS PubMed Google Scholar
Wang X et al (2021) Mitochondrial Metal Ion Transport in Cell Metabolism and Disease. Int J Mol Sci 22(14). https://doi.org/10.3390/ijms22147525
Nelson N (1999) Metal ion transporters and homeostasis EMBO J, 18(16): p. 4361 – 71.10.1093/emboj/18.16.4361
Guertl B, Noehammer C, Hoefler G (2000) Metabolic cardiomyopathies Int J Exp Pathol, 81(6): p. 349 – 72.10.1046/j.1365-2613.2000.00186.x
Savarese G et al (2023) Iron Deficiency and Cardiovascular Disease. Eur Heart J 44(1):14–27. https://doi.org/10.1093/eurheartj/ehac569
Article CAS PubMed Google Scholar
Evstatiev R, Gasche C (2012) Iron sensing and signalling Gut, 61(6): p. 933 – 52.10.1136/gut.2010.214312
Babcock M et al (1997) Regulation of mitochondrial iron accumulation by Yfh1p, a putative homolog of frataxin Science, 276(5319): p. 1709 – 12.10.1126/science.276.5319.1709
Andrews NC, Levy JE (1998) Iron is hot: an update on the pathophysiology of hemochromatosis. Blood 92(6):1845–1851
Article CAS PubMed Google Scholar
Askwith C, Kaplan J (1998) Iron and copper transport in yeast and its relevance to human disease Trends Biochem Sci, 23(4): p. 135 – 8.10.1016/s0968-0004(98)01192-x
Liu Y, Miao J (2022) An emerging role of defective copper metabolism in Heart Disease. Nutrients 14(3). https://doi.org/10.3390/nu14030700
Hsu CC et al (2022) Iron overload disorders Hepatol Commun, 6(8): p. 1842-1854.10.1002/hep4.2012
Dixon SJ, Stockwell BR (2014) The role of iron and reactive oxygen species in cell death Nat Chem Biol, 10(1): p. 9-17.10.1038/nchembio.1416
Papanikolaou G, Pantopoulos K (2005) Iron metabolism and toxicity Toxicol Appl Pharmacol, 202(2): p. 199-211.10.1016/j.taap.2004.06.021
Stockwell BR (2022) Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications Cell, 185(14): p. 2401-2421.10.1016/j.cell.2022.06.003
Tsvetkov P et al (2022) Copper induces cell death by targeting lipoylated TCA cycle proteins Science, 375(6586): p. 1254-1261.10.1126/science.abf0529
Roemhild K et al (2021) Iron metabolism: pathophysiology and pharmacology Trends Pharmacol Sci, 42(8): p. 640-656.10.1016/j.tips.2021.05.001
Sheftel A, Stehling O, Lill R (2010) Iron-sulfur proteins in health and disease Trends Endocrinol Metab, 21(5): p. 302 – 14.10.1016/j.tem.2009.12.006
Puig S et al (2017) The elemental role of iron in DNA synthesis and repair Metallomics, 9(11): p. 1483-1500.10.1039/c7mt00116a
Zhang C (2014) Essential functions of iron-requiring proteins in DNA replication, repair and cell cycle control Protein Cell, 5(10): p. 750 – 60.10.1007/s13238-014-0083-7
Morales M, Xue X (2021) Targeting iron metabolism in cancer therapy Theranostics, 11(17): p. 8412-8429.10.7150/thno.59092
Gozzelino R, Jeney V, Soares MP (2010) Mechanisms of cell protection by heme oxygenase-1 Annu Rev Pharmacol Toxicol, 50: p. 323 – 54.10.1146/annurev.pharmtox.010909.105600
Ganz T (2013) Systemic iron homeostasis Physiol Rev, 93(4): p. 1721 – 41.10.1152/physrev.00008.2013
Wang X, Wang WX (2021) Intracellular Biotransformation of Cu(II)/Cu(I) Explained High Cu Toxicity to Phytoplankton Chlamydomonas reinhardtii Environ Sci Technol, 55(21): p. 14772-14781.10.1021/acs.est.1c05408
Kim BE, Nevitt T, Thiele DJ (2008) Mechanisms for copper acquisition, distribution and regulation Nat Chem Biol, 4(3): p. 176 – 85.10.1038/nchembio.72
Mondola P et al (2016) The Cu, Zn Superoxide Dismutase: Not Only a Dismutase Enzyme Front Physiol, 7: p. 594.10.3389/fphys.2016.00594
Turski ML, Thiele DJ (2009) New roles for copper metabolism in cell proliferation, signaling, and disease J Biol Chem, 284(2): p. 717 – 21.10.1074/jbc.R800055200
Ryo Yonashiro AS, Miyachi M, Fukuda T, Matsushita N, Inatome R, Ogata Y (2009) Takehiro Suzuki, and a.S.Y. Naoshi Dohmae, Mitochondrial ubiquitin ligase MITOL ubiquitinates mutant SOD1 and attenuates mutant SOD1-induced reactive oxygen species generation 10.1091/mbc.E09
Tang D et al (2019) The molecular machinery of regulated cell death Cell Res, 29(5): p. 347-364.10.1038/s41422-019-0164-5
Dixon SJ et al (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death Cell, 149(5): p. 1060 – 72.10.1016/j.cell.2012.03.042
Yang WS, Stockwell BR (2008) Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells Chem Biol, 15(3): p. 234 – 45.10.1016/j.chembiol.2008.02.010
Wolpaw AJ et al (2011) Modulatory profiling identifies mechanisms of small molecule-induced cell death Proc Natl Acad Sci U S A, 108(39): p. E771-80.10.1073/pnas.1106149108
Jiang X, Stockwell BR, Conrad M (2021) Ferroptosis: mechanisms, biology and role in disease Nat Rev Mol Cell Biol, 22(4): p. 266-282.10.1038/s41580-020-00324-8
Singh M et al (2006) Iron bioavailability: UK Food Standards Agency workshop report Br J Nutr, 96(5): p. 985 – 90.10.1017/bjn20061894
Ke K et al (2022) The crosstalk effect between ferrous and other ions metabolism in ferroptosis for therapy of cancer Front Oncol, 12: p. 916082.10.3389/fonc.2022.916082
Drakesmith H, Nemeth E, Ganz T (2015) Ironing out Ferroportin Cell Metab, 22(5): p. 777 – 87.10.1016/j.cmet.2015.09.006
Andrews NC, Schmidt PJ (2007) Iron homeostasis Annu Rev Physiol, 69: p. 69-85.10.1146/annurev.physiol.69.031905.164337
Dautry-Varsat A, Ciechanover A, Lodish HF (1983) pH and the recycling of transferrin during receptor-mediated endocytosis
Hentze NHaMW (2022) Previously uncharacterized isoforms of divalent metal transporter (DMT)-1: implications for regulation and cellular function
Zhang S et al (2022) Double-edge sword roles of iron in driving energy production versus instigating ferroptosis Cell Death Dis, 13(1): p. 40.10.1038/s41419-021-04490-1
Park CH et al (2001) Hepcidin, a urinary antimicrobial peptide synthesized in the liver J Biol Chem, 276(11): p. 7806 – 10.10.1074/jbc.M008922200
Nemeth E et al (2004) Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization Science, 306(5704): p. 2090 – 3.10.1126/science.1104742
CABANTCHIK OKaZI (2002) The labile iron pool: characterization, measurement, and participation in cellular processes(1)
Shah R, Shchepinov MS, Pratt DA (2018) Resolving the Role of Lipoxygenases in the Initiation and Execution of Ferroptosis ACS Cent Sci, 4(3): p. 387-396.10.1021/acscentsci.7b00589
Yang WS et al (2016) Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis Proc Natl Acad Sci U S A, 113(34): p. E4966-75.10.1073/pnas.1603244113
Doll S, Conrad M (2017) Iron and ferroptosis: A still ill-defined liaison IUBMB Life, 69(6): p. 423-434.10.1002/iub.1616
Enric Brillas IS, Mehmet A, Oturan (2020) Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry
Wenzel SE et al (2017) PEBP1 Wardens Ferroptosis by Enabling Lipoxygenase Generation of Lipid Death Signals Cell, 171(3): p. 628–641.e26.10.1016/j.cell.2017.09.044
Chu B et al (2019) ALOX12 is required for p53-mediated tumour suppression through a distinct ferroptosis pathway Nat Cell Biol, 21(5): p. 579-591.10.1038/s41556-019-0305-6
Zou Y et al (2020) Cytochrome P450 oxidoreductase contributes to phospholipid peroxidation in ferroptosis Nat Chem Biol, 16(3): p. 302-309.10.1038/s41589-020-0472-6
Abrams RP, Carroll WL, Woerpel KA (2016) Five-Membered Ring Peroxide Selectively Initiates Ferroptosis in Cancer Cells ACS Chem Biol, 11(5): p. 1305 – 12.10.1021/acschembio.5b00900
Schilstra MJ, Veldink GA, Vliegenthart JF (1994) The dioxygenation rate in lipoxygenase catalysis is determined by the amount of iron (III) lipoxygenase in solution Biochemistry, 33(13): p. 3974 – 9.10.1021/bi00179a025
Brown CW et al (2019) Prominin2 Drives Ferroptosis Resistance by Stimulating Iron Export Dev Cell, 51(5): p. 575–586.e4.10.1016/j.devcel.2019.10.007
Patel SJ et al (2021) The iron chaperone and nucleic acid-binding activities of poly(rC)-binding protein 1 are separable and independently essential Proc Natl Acad Sci U S A, 118(25).10.1073/pnas.2104666118
Tang D, Chen X, Kroemer G (2022) Cuproptosis: a copper-triggered modality of mitochondrial cell death Cell Res, 32(5): p. 417-418.10.1038/s41422-022-00653-7
Kahlson MA, Dixon SJ (2022) Copper-induced cell death Science, 375(6586): p. 1231-1232.10.1126/science.abo3959
Cobine PA, Brady DC (2022) Cuproptosis: Cellular and molecular mechanisms underlying copper-induced cell death Mol Cell, 82(10): p. 1786-1787.10.1016/j.molcel.2022.05.001
Pierson H, Yang H, Lutsenko S (2019) Copper Transport and Disease: What Can We Learn from Organoids? Annu Rev Nutr, 39: p. 75-94.10.1146/annurev-nutr-082018-124242
Shanbhag VC et al (2021) Copper metabolism as a unique vulnerability in cancer Biochim Biophys Acta Mol Cell Res, 1868(2): p. 118893.10.1016/j.bbamcr.2020.118893
Eisses JF, Chi Y, Kaplan JH (2005) Stable plasma membrane levels of hCTR1 mediate cellular copper uptake J Biol Chem, 280(10): p. 9635 – 9.10.1074/jbc.M500116200
Shawki A et al (2015) Intestinal DMT1 is critical for iron absorption in the mouse but is not required for the absorption of copper or manganese Am J Physiol Gastrointest Liver Physiol, 309(8): p. G635-47.10.1152/ajpgi.00160.2015
Puig S, Thiele DJ (2002) Molecular mechanisms of copper uptake and distribution Curr Opin Chem Biol, 6(2): p. 171 – 80.10.1016/s1367-5931(02)00298-3
Tsang T, Davis CI, Brady DC (2021) Copper biology Curr Biol, 31(9): p. R421-r427.10.1016/j.cub.2021.03.054
Tsvetkov P et al (2019) Mitochondrial metabolism promotes adaptation to proteotoxic stress Nat Chem Biol, 15(7): p. 681-689.10.1038/s41589-019-0291-9
Rowland EA, Snowden CK, Cristea IM (2018) Protein lipoylation: an evolutionarily conserved metabolic regulator of health and disease Curr Opin Chem Biol, 42: p. 76-85.10.1016/j.cbpa.2017.11.003
Forman HJ, Zhang H, Rinna A (2009) Glutathione: overview of its protective roles, measurement, and biosynthesis Mol Aspects Med, 30(1–2): p. 1-12.10.1016/j.mam.2008.08.006
Aquilano K, Baldelli S, Ciriolo MR (2014) Glutathione: new roles in redox signaling for an old antioxidant Front Pharmacol, 5: p. 196.10.3389/fphar.2014.00196
Chen X et al (2021) Broadening horizons: the role of ferroptosis in cancer Nat Rev Clin Oncol, 18(5): p. 280-296.10.1038/s41571-020-00462-0
Cao JY et al (2019) A Genome-wide Haploid Genetic Screen Identifies Regulators of Glutathione Abundance and Ferroptosis Sensitivity Cell Rep, 26(6): p. 1544–1556.e8.10.1016/j.celrep.2019.01.043
Hao S et al (2017) Cysteine Dioxygenase 1 Mediates Erastin-Induced Ferroptosis in Human Gastric Cancer Cells Neoplasia, 19(12): p. 1022-1032.10.1016/j.neo.2017.10.005
Kang YP et al (2021) Non-canonical Glutamate-Cysteine Ligase Activity Protects against Ferroptosis Cell Metab, 33(1): p. 174–189.e7.10.1016/j.cmet.2020.12.007
Li S-R, Bu L-L, Cai L (2022) Cuproptosis: lipoylated TCA cycle proteins-mediated novel cell death pathway Signal Transduction and Targeted Therapy, 7(1).10.1038/s41392-022-01014-x
Lill R, Freibert SA (2020) Mechanisms of Mitochondrial Iron-Sulfur Protein Biogenesis Annu Rev Biochem, 89: p. 471-499.10.1146/annurev-biochem-013118-111540
Ali ME et al (2014) The iron-sulfur core in Rieske proteins is not symmetric J Biol Inorg Chem, 19(8): p. 1287 – 93.10.1007/s00775-014-1185-7
Yankovskaya V et al (2003) Architecture of succinate dehydrogenase and reactive oxygen species generation Science, 299(5607): p. 700 – 4.10.1126/science.1079605
Stiban J et al (2014) The N-terminal domain of the Drosophila mitochondrial replicative DNA helicase contains an iron-sulfur cluster and binds DNA J Biol Chem, 289(35): p. 24032 – 42.10.1074/jbc.M114.587774
Mariotti L et al (2020) The iron-sulphur cluster in human DNA2 is required for all biochemical activities of DNA2 Commun Biol, 3(1): p. 322.10.1038/s42003-020-1048-4
Kobayashi K, Fujikawa M, Kozawa T (2014) Oxidative stress sensing by the iron-sulfur cluster in the transcription factor, SoxR J Inorg Biochem, 133: p. 87-91.10.1016/j.jinorgbio.2013.11.008
Kiley PJ, Beinert H (1998) Oxygen sensing by the global regulator, FNR: the role of the iron-sulfur cluster FEMS Microbiol Rev, 22(5): p. 341 – 52.10.1111/j.1574-6976.1998.tb00375.x
Hentze MW, Kühn LC (1996) Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress Proc Natl Acad Sci U S A, 93(16): p. 8175 – 82.10.1073/pnas.93.16.8175
Hentze MW et al (2010) Two to tango: regulation of Mammalian iron metabolism Cell, 142(1): p. 24-38.10.1016/j.cell.2010.06.028
Hirling H, Henderson BR, Kühn LC (1994) Mutational analysis of the [4Fe-4S]-cluster converting iron regulatory factor from its RNA-binding form to cytoplasmic aconitase Embo j, 13(2): p. 453 – 61.10.1002/j.1460-2075.1994.tb06280.x
Tong WH, Rouault TA (2006) Functions of mitochondrial ISCU and cytosolic ISCU in mammalian iron-sulfur cluster biogenesis and iron homeostasis Cell Metab, 3(3): p. 199-210.10.1016/j.cmet.2006.02.003
Alvarez SW et al (2017) NFS1 undergoes positive selection in lung tumours and protects cells from ferroptosis Nature, 551(7682): p. 639-643.10.1038/nature24637
Lei G, Zhuang L, Gan B (2022) Targeting ferroptosis as a vulnerability in cancer Nat Rev Cancer, 22(7): p. 381-396.10.1038/s41568-022-00459-0
Du J et al (2019) DHA inhibits proliferation and induces ferroptosis of leukemia cells through autophagy dependent degradation of ferritin Free Radic Biol Med, 131: p. 356-369.10.1016/j.freeradbiomed.2018.12.011
Yuan H et al (2016) CISD1 inhibits ferroptosis by protection against mitochondrial lipid peroxidation Biochem Biophys Res Commun, 478(2): p. 838 – 44.10.1016/j.bbrc.2016.08.034
Kim EH et al (2018) CISD2 inhibition overcomes resistance to sulfasalazine-induced ferroptotic cell death in head and neck cancer Cancer Lett, 432: p. 180-190.10.1016/j.canlet.2018.06.018
Du J et al (2020) Identification of Frataxin as a regulator of ferroptosis Redox Biol, 32: p. 101483.10.1016/j.redox.2020.101483
Dixon SJ et al (2015) Human Haploid Cell Genetics Reveals Roles for Lipid Metabolism Genes in Nonapoptotic Cell Death ACS Chem Biol, 10(7): p. 1604 – 9.10.1021/acschembio.5b00245
Doll S et al (2019) FSP1 is a glutathione-independent ferroptosis suppressor Nature, 575(7784): p. 693-698.10.1038/s41586-019-1707-0
Sha W et al (2021) Mechanism of Ferroptosis and Its Role in Type 2 Diabetes Mellitus J Diabetes Res, 2021: p. 9999612.10.1155/2021/9999612
Lee H et al (2020) Energy-stress-mediated AMPK activation inhibits ferroptosis Nat Cell Biol, 22(2): p. 225-234.10.1038/s41556-020-0461-8
Li C et al (2020) LKB1-AMPK axis negatively regulates ferroptosis by inhibiting fatty acid synthesis Signal Transduct Target Ther, 5(1): p. 187.10.1038/s41392-020-00297-2
Kagan VE et al (2017) Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis Nat Chem Biol, 13(1): p. 81-90.10.1038/nchembio.2238
Hay N (2016) Reprogramming glucose metabolism in cancer: can it be exploited for cancer therapy? Nat Rev Cancer, 16(10): p. 635 – 49.10.1038/nrc.2016.77
Wang Y et al (2022) ACSL4 deficiency confers protection against ferroptosis-mediated acute kidney injury Redox Biol, 51: p. 102262.10.1016/j.redox.2022.102262
Zhao Z et al (2023) Cytoplasmic HMGB1 induces renal tubular ferroptosis after ischemia/reperfusion Int Immunopharmacol, 116: p. 109757.10.1016/j.intimp.2023.109757
Tonnus W et al (2021) Dysfunction of the key ferroptosis-surveilling systems hypersensitizes mice to tubular necrosis during acute kidney injury Nat Commun, 12(1): p. 4402.10.1038/s41467-021-24712-6
Sun X et al (2023) TRIM21 ubiquitylates GPX4 and promotes ferroptosis to aggravate ischemia/reperfusion-induced acute kidney injury Life Sci, 321: p. 121608.10.1016/j.lfs.2023.121608
Li H et al (2023) Ferroptosis is involved in polymyxin B-induced acute kidney injury via activation of p53 Chem Biol Interact, 378: p. 110479.10.1016/j.cbi.2023.110479
Kim DH et al (2022) Farnesoid X receptor protects against cisplatin-induced acute kidney injury by regulating the transcription of ferroptosis-related genes Redox Biol, 54: p. 102382.10.1016/j.redox.2022.102382
Lin Q et al (2023) Mitophagy alleviates cisplatin-induced renal tubular epithelial cell ferroptosis through ROS/HO-1/GPX4 axis Int J Biol Sci, 19(4): p. 1192-1210.10.7150/ijbs.80775
Wang Y et al (2021) Quercetin alleviates acute kidney injury by inhibiting ferroptosis J Adv Res, 28: p. 231-243.10.1016/j.jare.2020.07.007
Kolbrink B et al (2022) Vitamin K1 inhibits ferroptosis and counteracts a detrimental effect of phenprocoumon in experimental acute kidney injury Cell Mol Life Sci, 79(7): p. 387.10.1007/s00018-022-04416-w
Qiongyue Z et al (2022) Post-treatment With Irisin Attenuates Acute Kidney Injury in Sepsis Mice Through Anti-Ferroptosis via the SIRT1/Nrf2 Pathway Front Pharmacol, 13: p. 857067.10.3389/fphar.2022.857067
Hu J et al (2022) Leonurine alleviates ferroptosis in cisplatin-induced acute kidney injury by activating the Nrf2 signalling pathway Br J Pharmacol, 179(15): p. 3991-4009.10.1111/bph.15834
Ma L et al (2023) Paeoniflorin alleviates ischemia/reperfusion induced acute kidney injury by inhibiting Slc7a11-mediated ferroptosis Int Immunopharmacol, 116: p. 109754.10.1016/j.intimp.2023.109754
Zhou L et al (2022) Targeting Ferroptosis Attenuates Interstitial Inflammation and Kidney Fibrosis Kidney Dis (Basel), 8(1): p. 57-71.10.1159/000517723
Jung KH et al (2023) Synergistic Renoprotective Effect of Melatonin and Zileuton by Inhibition of Ferroptosis via the AKT/mTOR/NRF2 Signaling in Kidney Injury and Fibrosis Biomol Ther (Seoul), 10.4062/biomolther.2023.062
Zhu B et al (2023) Formononetin ameliorates ferroptosis-associated fibrosis in renal tubular epithelial cells and in mice with chronic kidney disease by suppressing the Smad3/ATF3/SLC7A11 signaling Life Sci, 315: p. 121331.10.1016/j.lfs.2022.121331
Shi L et al (2023) MiR-20a-5p alleviates kidney ischemia/reperfusion injury by targeting ACSL4-dependent ferroptosis Am J Transplant, 23(1): p. 11-25.10.1016/j.ajt.2022.09.003
Tang Q et al (2023) Identification and verification of hub genes associated with ferroptosis in ischemia and reperfusion injury during renal transplantation Int Immunopharmacol, 120: p. 110393.10.1016/j.intimp.2023.110393
Kang L et al (2023) PDIA4 confers resistance to ferroptosis via induction of ATF4/SLC7A11 in renal cell carcinoma Cell Death Dis, 14(3): p. 193.10.1038/s41419-023-05719-x
Zou Y et al (2019) A GPX4-dependent cancer cell state underlies the clear-cell morphology and confers sensitivity to ferroptosis Nat Commun, 10(1): p. 1617.10.1038/s41467-019-09277-9
Lu Y et al (2021) KLF2 inhibits cancer cell migration and invasion by regulating ferroptosis through GPX4 in clear cell renal cell carcinoma Cancer Lett, 522: p. 1-13.10.1016/j.canlet.2021.09.014
Klasson TD et al (2022) ACSL3 regulates lipid droplet biogenesis and ferroptosis sensitivity in clear cell renal cell carcinoma Cancer Metab, 10(1): p. 14.10.1186/s40170-022-00290-z
Wang Q et al (2023) AIM2 promotes renal cell carcinoma progression and sunitinib resistance through FOXO3a-ACSL4 axis-regulated ferroptosis Int J Biol Sci, 19(4): p. 1266-1283.10.7150/ijbs.79853
Yang WH et al (2019) The Hippo Pathway Effector TAZ Regulates Ferroptosis in Renal Cell Carcinoma Cell Rep, 28(10): p. 2501–2508.e4.10.1016/j.celrep.2019.07.107
Lai J, Miao S, Ran L (2023) Ferroptosis-associated lncRNA prognostic signature predicts prognosis and immune response in clear cell renal cell carcinoma Sci Rep, 13(1): p. 2114.10.1038/s41598-023-29305-5
Hao J et al (2023) Combination treatment with FAAH inhibitors/URB597 and ferroptosis inducers significantly decreases the growth and metastasis of renal cell carcinoma cells via the PI3K-AKT signaling pathway Cell Death Dis, 14(4): p. 247.10.1038/s41419-023-05779-z
Xu J et al (2022) Multi-omics pan-cancer study of cuproptosis core gene FDX1 and its role in kidney renal clear cell carcinoma Front Immunol, 13: p. 981764.10.3389/fimmu.2022.981764
Luo G et al (2023) Cuproptosis-Related Ferroptosis genes for Predicting Prognosis in kidney renal clear cell carcinoma Eur J Med Res, 28(1): p. 176.10.1186/s40001-023-01137-z
Vokshi BH et al (2023) SMARCB1 regulates a TFCP2L1-MYC transcriptional switch promoting renal medullary carcinoma transformation and ferroptosis resistance Nat Commun, 14(1): p. 3034.10.1038/s41467-023-38472-y
Gaschler MM et al (2018) FINO(2) initiates ferroptosis through GPX4 inactivation and iron oxidation Nat Chem Biol, 14(5): p. 507-515.10.1038/s41589-018-0031-6
Ooko E et al (2015) Artemisinin derivatives induce iron-dependent cell death (ferroptosis) in tumor cells Phytomedicine, 22(11): p. 1045 – 54.10.1016/j.phymed.2015.08.002
Hassannia B et al (2018) Nano-targeted induction of dual ferroptotic mechanisms eradicates high-risk neuroblastoma J Clin Invest, 128(8): p. 3341-3355.10.1172/jci99032
Lin PL et al (2020) Saponin Formosanin C-induced Ferritinophagy and Ferroptosis in Human Hepatocellular Carcinoma Cells Antioxidants (Basel), 9(8).10.3390/antiox9080682
Wang ZX et al (2021) Quercetin induces p53-independent cancer cell death through lysosome activation by the transcription factor EB and Reactive Oxygen Species-dependent ferroptosis Br J Pharmacol, 178(5): p. 1133-1148.10.1111/bph.15350
Liu JL et al (2018) Iron and Alzheimer’s Disease: From Pathogenesis to Therapeutic Implications Front Neurosci, 12: p. 632.10.3389/fnins.2018.00632
Naito Y et al (2015) Association between renal iron accumulation and renal interstitial fibrosis in a rat model of chronic kidney disease Hypertens Res, 38(7): p. 463 – 70.10.1038/hr.2015.14
Li J et al (2020) Ferroptosis: past, present and future Cell Death Dis, 11(2): p. 88.10.1038/s41419-020-2298-2
Ikeda Y et al (2021) Role of ferroptosis in cisplatin-induced acute nephrotoxicity in mice J Trace Elem Med Biol, 67: p. 126798.10.1016/j.jtemb.2021.126798
留言 (0)