Role of Transcription Factor Nrf2 in Pyroptosis in Spinal Cord Injury by Regulating GSDMD

Al Mamun A, Wu Y, Monalisa I, Jia C, Zhou K, Munir F, Xiao J (2021) Role of pyroptosis in spinal cord injury and its therapeutic implications. J Adv Res 28:97–109. https://doi.org/10.1016/j.jare.2020.08.004

CAS  Article  PubMed  Google Scholar 

Eckert MJ, Martin MJ (2017) Trauma: spinal cord injury. Surg Clin North Am 97:1031–1045. https://doi.org/10.1016/j.suc.2017.06.008

Article  PubMed  Google Scholar 

Ikpeze TC, Mesfin A (2017) Spinal cord injury in the geriatric population: risk factors, treatment options, and long-term management. Geriatr Orthop Surg Rehabil 8:115–118. https://doi.org/10.1177/2151458517696680

Article  PubMed  PubMed Central  Google Scholar 

Hachem LD, Ahuja CS, Fehlings MG (2017) Assessment and management of acute spinal cord injury: from point of injury to rehabilitation. J Spinal Cord Med 40:665–675. https://doi.org/10.1080/10790268.2017.1329076

Article  PubMed  PubMed Central  Google Scholar 

Dai W, Wang X, Teng H, Li C, Wang B, Wang J (2019) Celastrol inhibits microglial pyroptosis and attenuates inflammatory reaction in acute spinal cord injury rats. Int Immunopharmacol 66:215–223. https://doi.org/10.1016/j.intimp.2018.11.029

CAS  Article  PubMed  Google Scholar 

Chen G, Zhang YQ, Qadri YJ, Serhan CN, Ji RR (2018) Microglia in pain: detrimental and protective roles in pathogenesis and resolution of pain. Neuron 100:1292–1311. https://doi.org/10.1016/j.neuron.2018.11.009

CAS  Article  PubMed  PubMed Central  Google Scholar 

Liu Z, Yao X, Jiang W, Li W, Zhu S, Liao C, Zou L, Ding R, Chen J (2020) Advanced oxidation protein products induce microglia-mediated neuroinflammation via MAPKs-NF-kappaB signaling pathway and pyroptosis after secondary spinal cord injury. J Neuroinflammation 17:90. https://doi.org/10.1186/s12974-020-01751-2

CAS  Article  PubMed  PubMed Central  Google Scholar 

Hu X, Chen H, Xu H, Wu Y, Wu C, Jia C, Li Y, Sheng S, Xu C, Xu H, Ni W, Zhou K (2020) Role of pyroptosis in traumatic brain and spinal cord injuries. Int J Biol Sci 16:2042–2050. https://doi.org/10.7150/ijbs.45467

CAS  Article  PubMed  PubMed Central  Google Scholar 

Xu S, Wang J, Zhong J, Shao M, Jiang J, Song J, Zhu W, Zhang F, Xu H, Xu G, Zhang Y, Ma X, Lyu F (2021) CD73 alleviates GSDMD-mediated microglia pyroptosis in spinal cord injury through PI3K/AKT/Foxo1 signaling. Clin Transl Med 11:e269. https://doi.org/10.1002/ctm2.269

CAS  Article  PubMed  Google Scholar 

Xia P, Gao X, Duan L, Zhang W, Sun YF (2018) Mulberrin (Mul) reduces spinal cord injury (SCI)-induced apoptosis, inflammation and oxidative stress in rats via miroRNA-337 by targeting Nrf-2. Biomed Pharmacother 107:1480–1487. https://doi.org/10.1016/j.biopha.2018.07.082

CAS  Article  PubMed  Google Scholar 

Lin X, Zhu J, Ni H, Rui Q, Sha W, Yang H, Li D, Chen G (2019) Treatment with 2-BFI attenuated spinal cord injury by inhibiting oxidative stress and neuronal apoptosis via the Nrf2 signaling pathway. Front Cell Neurosci 13:567. https://doi.org/10.3389/fncel.2019.00567

CAS  Article  PubMed  PubMed Central  Google Scholar 

Hennig P, Garstkiewicz M, Grossi S, Di Filippo M, French LE, Beer HD (2018) The crosstalk between Nrf2 and inflammasomes. Int J Mol Sci 19:562. https://doi.org/10.3390/ijms19020562

CAS  Article  PubMed Central  Google Scholar 

Wang X, Ye L, Zhang K, Gao L, Xiao J, Zhang Y (2020) Upregulation of microRNA-200a in bone marrow mesenchymal stem cells enhances the repair of spinal cord injury in rats by reducing oxidative stress and regulating Keap1/Nrf2 pathway. Artif Organs 44:744–752. https://doi.org/10.1111/aor.13656

CAS  Article  PubMed  Google Scholar 

Rodrigues LF, Moura-Neto V (2018) Biomarkers in spinal cord injury: from prognosis to treatment. Mol Neurobiol 55:6436–6448. https://doi.org/10.1007/s12035-017-0858-y

CAS  Article  PubMed  Google Scholar 

Ni S, Yang B, Xia L, Zhang H (2021) EZH2 mediates miR-146a-5p/HIF-1alpha to alleviate inflammation and glycolysis after acute spinal cord injury. Mediators Inflamm 2021:5591582. https://doi.org/10.1155/2021/5591582

CAS  Article  PubMed  PubMed Central  Google Scholar 

Roshanravan N, Alamdari NM, Jafarabadi MA, Mohammadi A, Shabestari BR, Nasirzadeh N, Asghari S, Mansoori B, Akbarzadeh M, Ghavami A, Ghaffari S, Ostadrahimi A (2020) Effects of oral butyrate and inulin supplementation on inflammation-induced pyroptosis pathway in type 2 diabetes: a randomized, double-blind, placebo-controlled trial. Cytokine 131:155101. https://doi.org/10.1016/j.cyto.2020.155101

CAS  Article  PubMed  Google Scholar 

Chen LJ, Chuang L, Huang YH, Zhou J, Lim SH, Lee CI, Lin WW, Lin TE, Wang WL, Chen L, Chien S, Chiu JJ (2015) MicroRNA mediation of endothelial inflammatory response to smooth muscle cells and its inhibition by atheroprotective shear stress. Circ Res 116:1157–1169. https://doi.org/10.1161/CIRCRESAHA.116.305987

CAS  Article  PubMed  PubMed Central  Google Scholar 

Fabian MR, Sonenberg N, Filipowicz W (2010) Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 79:351–379. https://doi.org/10.1146/annurev-biochem-060308-103103

CAS  Article  PubMed  Google Scholar 

Liu R, Liu C, Chen D, Yang WH, Liu X, Liu CG, Dugas CM, Tang F, Zheng P, Liu Y, Wang L (2015) FOXP3 controls an miR-146/NF-kappaB negative feedback loop that inhibits apoptosis in breast cancer cells. Cancer Res 75:1703–1713. https://doi.org/10.1158/0008-5472.CAN-14-2108

CAS  Article  PubMed  PubMed Central  Google Scholar 

Jones-Bolin S (2012) Guidelines for the care and use of laboratory animals in biomedical research. Curr Protoc Pharmacol. https://doi.org/10.1002/0471141755.pha04bs59

Article  PubMed  Google Scholar 

Liu G, Keeler BE, Zhukareva V, Houle JD (2010) Cycling exercise affects the expression of apoptosis-associated microRNAs after spinal cord injury in rats. Exp Neurol 226:200–206. https://doi.org/10.1016/j.expneurol.2010.08.032

CAS  Article  PubMed  PubMed Central  Google Scholar 

Basso DM, Beattie MS, Bresnahan JC (1995) A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma 12:1–21. https://doi.org/10.1089/neu.1995.12.1

CAS  Article  PubMed  Google Scholar 

Xu S, Wang J, Jiang J, Song J, Zhu W, Zhang F, Shao M, Xu H, Ma X, Lyu F (2020) TLR4 promotes microglial pyroptosis via lncRNA-F630028O10Rik by activating PI3K/AKT pathway after spinal cord injury. Cell Death Dis 11:693. https://doi.org/10.1038/s41419-020-02824-z

CAS  Article  PubMed  PubMed Central  Google Scholar 

Tan Y, Yu L, Zhang C, Chen K, Lu J, Tan L (2018) miRNA-146a attenuates inflammation in an in vitro spinal cord injury model via inhibition of TLR4 signaling. Exp Ther Med 16:3703–3709. https://doi.org/10.3892/etm.2018.6645

CAS  Article  PubMed  PubMed Central  Google Scholar 

Anjum A, Yazid MD, Fauzi Daud M, Idris J, Ng AMH, Selvi Naicker A, Ismail OHR, Athi Kumar RK, Lokanathan Y (2020) Spinal cord injury: pathophysiology, multimolecular interactions, and underlying recovery mechanisms. Int J Mol Sci 21:7533. https://doi.org/10.3390/ijms21207533

CAS  Article  PubMed Central  Google Scholar 

Lv R, Du L, Zhang L, Zhang Z (2019) Polydatin attenuates spinal cord injury in rats by inhibiting oxidative stress and microglia apoptosis via Nrf2/HO-1 pathway. Life Sci 217:119–127. https://doi.org/10.1016/j.lfs.2018.11.053

CAS  Article  PubMed  Google Scholar 

Kumar S, Fritz Z, Sulakhiya K, Theis T, Berthiaume F (2020) Transcriptional factors and protein biomarkers as target therapeutics in traumatic spinal cord and brain injury. Curr Neuropharmacol 18:1092–1105. https://doi.org/10.2174/1570159X18666200522203542

CAS  Article  PubMed  PubMed Central  Google Scholar 

Li D, Tian H, Li X, Mao L, Zhao X, Lin J, Lin S, Xu C, Liu Y, Guo Y, Mei X (2020) Zinc promotes functional recovery after spinal cord injury by activating Nrf2/HO-1 defense pathway and inhibiting inflammation of NLRP3 in nerve cells. Life Sci 245:117351. https://doi.org/10.1016/j.lfs.2020.117351

CAS  Article  PubMed  Google Scholar 

Chen L, Yang P, Kijlstra A (2002) Distribution, markers, and functions of retinal microglia. Ocul Immunol Inflamm 10:27–39. https://doi.org/10.1076/ocii.10.1.27.10328

Article  PubMed  Google Scholar 

Ma Z, Lu Y, Yang F, Li S, He X, Gao Y, Zhang G, Ren E, Wang Y, Kang X (2020) Rosmarinic acid exerts a neuroprotective effect on spinal cord injury by suppressing oxidative stress and inflammation via modulating the Nrf2/HO-1 and TLR4/NF-kappaB pathways. Toxicol Appl Pharmacol 397:115014. https://doi.org/10.1016/j.taap.2020.115014

CAS  Article  PubMed  Google Scholar 

Chen F, Hu M, Shen Y, Zhu W, Cao A, Ni B, Qian J, Yang J (2021) Isorhamnetin promotes functional recovery in rats with spinal cord injury by abating oxidative stress and modulating M2 macrophages/microglia polarization. Eur J Pharmacol 895:173878. https://doi.org/10.1016/j.ejphar.2021.173878

CAS  Article  PubMed  Google Scholar 

Zhu J, Fu Y, Tu G (2020) Role of Smad3 inhibitor and the pyroptosis pathway in spinal cord injury. Exp Ther Med 20:1675–1681. https://doi.org/10.3892/etm.2020.8832

CAS  Article  PubMed  PubMed Central  Google Scholar 

Diao C, Chen Z, Qiu T, Liu H, Yang Y, Liu X, Wu J, Wang L (2019) Inhibition of PRMT5 attenuates oxidative stress-induced pyroptosis via activation of the Nrf2/HO-1 signal pathway in a mouse model of renal ischemia-reperfusion injury. Oxid Med Cell Longev 2019:2345658. https://doi.org/10.1155/2019/2345658

CAS  Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif