Interleukin 3 Inhibits Glutamate-Cytotoxicity in Neuroblastoma Cell Line

Zhou Y, Danbolt NC (2014) Glutamate as a neurotransmitter in the healthy brain. J Neural Transm 121:799–817. https://doi.org/10.1007/s00702-014-1180-8

Article  CAS  PubMed  Google Scholar 

Mattson MP (2008) Glutamate and neurotrophic factors in neuronal plasticity and disease. Ann N Y Acad Sci 1144:97–112. https://doi.org/10.1196/annals.1418.005

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kritis AA, Stamoula EG, Paniskaki KA, Vavilis TD (2015) Researching glutamate – induced cytotoxicity in different cell lines: a comparative/collective analysis/study. Front Cell Neurosci 9:91

Article  PubMed  PubMed Central  Google Scholar 

Obrenovitch TP (1999) High extracellular glutamate and neuronal death in neurological disorders. Cause, contribution or consequence? Ann N Y Acad Sci 890:273–286. https://doi.org/10.1111/j.1749-6632.1999.tb08004.x

Article  CAS  PubMed  Google Scholar 

Lewerenz J, Maher P (2015) Chronic glutamate toxicity in neurodegenerative diseases-what is the evidence? Front Neurosci 9:469. https://doi.org/10.3389/fnins.2015.00469

Article  PubMed  PubMed Central  Google Scholar 

Macrez R, Stys PK, Vivien D et al (2016) Mechanisms of glutamate toxicity in multiple sclerosis: biomarker and therapeutic opportunities. Lancet Neurol 15:1089–1102. https://doi.org/10.1016/S1474-4422(16)30165-X

Article  CAS  PubMed  Google Scholar 

Wang J, Wang F, Mai D, Qu S (2020) Molecular mechanisms of Glutamate Toxicity in Parkinson’s Disease. Front Neurosci 14:585584. https://doi.org/10.3389/fnins.2020.585584

Article  PubMed  PubMed Central  Google Scholar 

Iovino L, Tremblay ME, Civiero L (2020) Glutamate-induced excitotoxicity in Parkinson’s disease: the role of glial cells. J Pharmacol Sci 144:151–164. https://doi.org/10.1016/j.jphs.2020.07.011

Article  CAS  PubMed  Google Scholar 

Sepers MD, Raymond LA (2014) Mechanisms of synaptic dysfunction and excitotoxicity in Huntington’s disease. Drug Discov Today 19:990–996. https://doi.org/10.1016/j.drudis.2014.02.006

Article  CAS  PubMed  Google Scholar 

Bano D, Zanetti F, Mende Y, Nicotera P (2011) Neurodegenerative processes in Huntington’s disease. Cell Death Dis 2:e228. https://doi.org/10.1038/cddis.2011.112

Article  CAS  PubMed  PubMed Central  Google Scholar 

Estrada Sánchez AM, Mejía-Toiber J, Massieu L (2008) Excitotoxic neuronal death and the pathogenesis of Huntington’s disease. Arch Med Res 39:265–276. https://doi.org/10.1016/j.arcmed.2007.11.011

Article  CAS  PubMed  Google Scholar 

Raymond LA (2003) Excitotoxicity in Huntington disease. Clin Neurosci Res 3:121–128. https://doi.org/10.1016/S1566-2772(03)00054-9

Article  CAS  Google Scholar 

Bano D, Young KW, Guerin CJ et al (2005) Cleavage of the plasma membrane Na+/Ca2 + exchanger in Excitotoxicity. Cell 120:275–285. https://doi.org/10.1016/j.cell.2004.11.049

Article  CAS  PubMed  Google Scholar 

Nicholls DG, Budd SL (2000) Mitochondria and neuronal survival. Physiol Rev 80:315–360. https://doi.org/10.1152/physrev.2000.80.1.315

Article  CAS  PubMed  Google Scholar 

Hardingham GE, Bading H (2003) The Yin and Yang of NMDA receptor signalling. Trends Neurosci 26:81–89. https://doi.org/10.1016/S0166-2236(02)00040-1

Article  CAS  PubMed  Google Scholar 

Weissmiller AM, Wu C (2012) Current advances in using neurotrophic factors to treat neurodegenerative disorders. Transl Neurodegener 1:14. https://doi.org/10.1186/2047-9158-1-14

Article  PubMed  PubMed Central  Google Scholar 

Wang J, Hu W-W, Jiang Z, Feng M-J (2020) Advances in treatment of neurodegenerative diseases: perspectives for combination of stem cells with neurotrophic factors. World J Stem Cells 12:323–338. https://doi.org/10.4252/wjsc.v12.i5.323

Article  PubMed  PubMed Central  Google Scholar 

Chmielarz P, Saarma M (2020) Neurotrophic factors for disease-modifying treatments of Parkinson’s disease: gaps between basic science and clinical studies. Pharmacol Rep 72:1195–1217. https://doi.org/10.1007/s43440-020-00120-3

Article  PubMed  PubMed Central  Google Scholar 

Duraikannu A, Krishnan A, Chandrasekhar A, Zochodne DW (2019) Beyond trophic factors: exploiting the intrinsic Regenerative properties of adult neurons. Front Cell Neurosci 13:128. https://doi.org/10.3389/fncel.2019.00128

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kummer JL, Rao PK, Heidenreich KA (1997) Apoptosis induced by withdrawal of trophic factors is mediated by p38 mitogen-activated protein kinase. J Biol Chem 272:20490–20494. https://doi.org/10.1074/jbc.272.33.20490

Article  CAS  PubMed  Google Scholar 

Putcha GV, Deshmukh M, Johnson EMJ (2000) Inhibition of apoptotic signaling cascades causes loss of trophic factor dependence during neuronal maturation. J Cell Biol 149:1011–1018. https://doi.org/10.1083/jcb.149.5.1011

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kaushansky K, Shoemaker SG, Broudy VC et al (1992) Structure-function relationships of interleukin-3. An analysis based on the function and binding characteristics of a series of interspecies chimera of gibbon and murine interleukin-3. J Clin Invest 90:1879–1888. https://doi.org/10.1172/JCI116065

Article  CAS  PubMed  PubMed Central  Google Scholar 

Reddy EP, Korapati A, Chaturvedi P, Rane S (2000) IL-3 signaling and the role of src kinases, JAKs and STATs: a covert liaison unveiled. Oncogene 19:2532–2547. https://doi.org/10.1038/sj.onc.1203594

Article  CAS  PubMed  Google Scholar 

Testa U, Riccioni R, Diverio D et al (2004) Interleukin-3 receptor in acute leukemia. Leukemia 18:219–226. https://doi.org/10.1038/sj.leu.2403224

Article  CAS  PubMed  Google Scholar 

Luo X, Li M, Huang L et al (2012) The interleukin 3 gene (IL3) contributes to human brain volume variation by regulating proliferation and survival of neural progenitors. PLoS ONE 7:e50375. https://doi.org/10.1371/journal.pone.0050375

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li M, Huang L, Li K et al (2016) Adaptive evolution of interleukin-3 (IL3), a gene associated with brain volume variation in general human populations. Hum Genet 135:377–392. https://doi.org/10.1007/s00439-016-1644-z

Article  CAS  PubMed  Google Scholar 

Lim JC, Lu W, Beckel JM, Mitchell CH (2016) Neuronal Release of Cytokine IL-3 Triggered by Mechanosensitive Autostimulation of the P2X7 Receptor Is Neuroprotective. Front Cell Neurosci 10:270

Article  PubMed  PubMed Central  Google Scholar 

Kannan Y, Moriyama M, Sugano T et al (2000) Neurotrophic Action of Interleukin 3 and granulocyte-macrophage colony-stimulating factor on murine sympathetic neurons. Neuroimmunomodulation 8:132–141. https://doi.org/10.1159/000054273

Article  CAS  PubMed  Google Scholar 

Zambrano A, Otth C, Mujica L et al (2007) Interleukin-3 prevents neuronal death induced by amyloid peptide. BMC Neurosci 8:82. https://doi.org/10.1186/1471-2202-8-82

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zambrano A, Otth C, Maccioni RB, Concha II (2010) IL-3 controls tau modifications and protects cortical neurons from neurodegeneration. Curr Alzheimer Res 7:615–624. https://doi.org/10.2174/156720510793499011

Article  CAS  PubMed  Google Scholar 

Muñoz JP, Sánchez JR, Maccioni RB (2003) Regulation of p27 in the process of neuroblastoma N2A differentiation. J Cell Biochem 89:539–549. https://doi.org/10.1002/jcb.10525

Article  CAS  PubMed  Google Scholar 

Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45. https://doi.org/10.1093/nar/29.9.e45

Article  CAS  PubMed  PubMed Central  Google Scholar 

Callus BA, Mathey-Prevot B (1998) Interleukin-3-induced activation of the JAK/STAT pathway is prolonged by proteasome inhibitors. Blood 91:3182–3192

Article  CAS  PubMed  Google Scholar 

Adams JM, Cory S (1998) The Bcl-2 protein family: arbiters of cell survival. Science 281:1322–1326.

留言 (0)

沒有登入
gif