Targeting Large-Conductance Calcium-Activated Potassium Channels to Ameliorate Lipopolysaccharide-Induced Depressive-Like Behavior in Mice

Collaborators GMD (2022) Global, regional, and national burden of 12 mental disorders in 204 countries and territories, 1990–2019: a systematic analysis for the global burden of disease study 2019. Lancet Psych 9:137–150. https://doi.org/10.1016/s2215-0366(21)00395-3

Article  Google Scholar 

Malhi GS, Mann JJ (2018) Depression. Lancet 392:2299–2312. https://doi.org/10.1016/s0140-6736(18)31948-2

Article  PubMed  Google Scholar 

Hodes GE, Kana V, Menard C, Merad M, Russo SJ (2015) Neuroimmune mechanisms of depression. Nat Neurosci 18:1386–1393. https://doi.org/10.1038/nn.4113

Article  CAS  PubMed  PubMed Central  Google Scholar 

Enache D, Pariante CM, Mondelli V (2019) Markers of central inflammation in major depressive disorder: a systematic review and meta-analysis of studies examining cerebrospinal fluid, positron emission tomography and post-mortem brain tissue. Brain Behav Immun 81:24–40. https://doi.org/10.1016/j.bbi.2019.06.015

Article  PubMed  Google Scholar 

Afridi R, Suk K (2021) Neuroinflammatory basis of depression: learning from experimental models. Front Cell Neurosci 15:691067. https://doi.org/10.3389/fncel.2021.691067

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang AK, Miller BJ (2018) Meta-analysis of cerebrospinal fluid cytokine and tryptophan catabolite alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder, and depression. Schizophr Bull 44:75–83. https://doi.org/10.1093/schbul/sbx035

Article  PubMed  Google Scholar 

Levine J, Barak Y, Chengappa KN, Rapoport A, Rebey M, Barak V (1999) Cerebrospinal cytokine levels in patients with acute depression. Neuropsychobiology 40:171–176. https://doi.org/10.1159/000026615

Article  CAS  PubMed  Google Scholar 

Schaefer M, Capuron L, Friebe A, Diez-Quevedo C, Robaeys G, Neri S et al (2012) Hepatitis C infection, antiviral treatment and mental health: a European expert consensus statement. J Hepatol 57:1379–1390. https://doi.org/10.1016/j.jhep.2012.07.037

Article  PubMed  Google Scholar 

Yao R, Pan R, Shang C, Li X, Cheng J, Xu J et al (2020) Translocator protein 18 kDa (TSPO) deficiency inhibits microglial activation and impairs mitochondrial function. Front Pharmacol 11:986. https://doi.org/10.3389/fphar.2020.00986

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li H, Sagar AP, Kéri S (2018) Translocator protein (18kDa TSPO) binding, a marker of microglia, is reduced in major depression during cognitive-behavioral therapy. Prog Neuropsychopharmacol Biol Psychiatry 83:1–7. https://doi.org/10.1016/j.pnpbp.2017.12.011

Article  CAS  PubMed  Google Scholar 

Setiawan E, Wilson AA, Mizrahi R, Rusjan PM, Miler L, Rajkowska G et al (2015) Role of translocator protein density, a marker of neuroinflammation, in the brain during major depressive episodes. JAMA Psychiat 72:268–275. https://doi.org/10.1001/jamapsychiatry.2014.2427

Article  Google Scholar 

Steiner J, Walter M, Gos T, Guillemin GJ, Bernstein HG, Sarnyai Z et al (2011) Severe depression is associated with increased microglial quinolinic acid in subregions of the anterior cingulate gyrus: evidence for an immune-modulated glutamatergic neurotransmission? J Neuroinflam 8:94. https://doi.org/10.1186/1742-2094-8-94

Article  CAS  Google Scholar 

Torres-Platas SG, Cruceanu C, Chen GG, Turecki G, Mechawar N (2014) Evidence for increased microglial priming and macrophage recruitment in the dorsal anterior cingulate white matter of depressed suicides. Brain Behav Immun 42:50–59. https://doi.org/10.1016/j.bbi.2014.05.007

Article  CAS  PubMed  Google Scholar 

Rahimian R, Wakid M, O’Leary LA, Mechawar N (2021) The emerging tale of microglia in psychiatric disorders. Neurosci Biobehav Rev 131:1–29. https://doi.org/10.1016/j.neubiorev.2021.09.023

Article  PubMed  Google Scholar 

Clark SM, Pocivavsek A, Nicholson JD, Notarangelo FM, Langenberg P, McMahon RP et al (2016) Reduced kynurenine pathway metabolism and cytokine expression in the prefrontal cortex of depressed individuals. J Psychiatry Neurosci 41:386–394. https://doi.org/10.1503/jpn.150226

Article  PubMed  PubMed Central  Google Scholar 

Dionisie V, Filip GA, Manea MC, Manea M, Riga S (2021) The anti-inflammatory role of SSRI and SNRI in the treatment of depression: a review of human and rodent research studies. Inflammopharmacology 29:75–90. https://doi.org/10.1007/s10787-020-00777-5

Article  CAS  PubMed  Google Scholar 

Lyu D, Wang F, Zhang M, Yang W, Huang H, Huang Q et al (2022) Ketamine induces rapid antidepressant effects via the autophagy-NLRP3 inflammasome pathway. Psychopharmacology 239:3201–3212. https://doi.org/10.1007/s00213-022-06201-w

Article  CAS  PubMed  Google Scholar 

Lu Y, Ding X, Wu X, Huang S (2020) Ketamine inhibits LPS-mediated BV2 microglial inflammation via NMDA receptor blockage. Fundam Clin Pharmacol 34:229–237. https://doi.org/10.1111/fcp.12508

Article  CAS  PubMed  Google Scholar 

Mariani N, Everson J, Pariante CM, Borsini A (2022) Modulation of microglial activation by antidepressants. J Psychopharmacol 36:131–150. https://doi.org/10.1177/02698811211069110

Article  CAS  PubMed  PubMed Central  Google Scholar 

Henry CJ, Huang Y, Wynne A, Hanke M, Himler J, Bailey MT et al (2008) Minocycline attenuates lipopolysaccharide (LPS)-induced neuroinflammation, sickness behavior, and anhedonia. J Neuroinflammation 5:15. https://doi.org/10.1186/1742-2094-5-15

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nettis MA, Lombardo G, Hastings C, Zajkowska Z, Mariani N, Nikkheslat N et al (2021) Augmentation therapy with minocycline in treatment-resistant depression patients with low-grade peripheral inflammation: results from a double-blind randomised clinical trial. Neuropsychopharmacology 46:939–948. https://doi.org/10.1038/s41386-020-00948-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cao ZY, Liu YZ, Li JM, Ruan YM, Yan WJ, Zhong SY et al (2020) Glycyrrhizic acid as an adjunctive treatment for depression through anti-inflammation: a randomized placebo-controlled clinical trial. J Affect Disord 265:247–254. https://doi.org/10.1016/j.jad.2020.01.048

Article  CAS  PubMed  Google Scholar 

Kang HJ, Bae KY, Kim SW, Kim JT, Park MS, Cho KH et al (2016) Effects of interleukin-6, interleukin-18, and statin use, evaluated at acute stroke, on post-stroke depression during 1-year follow-up. Psychoneuroendocrinology 72:156–160. https://doi.org/10.1016/j.psyneuen.2016.07.001

Article  CAS  PubMed  Google Scholar 

Sun X, Zaydman MA, Cui J (2012) Regulation of voltage-activated K+ channel gating by transmembrane beta subunits. Front Pharmacol 3:63. https://doi.org/10.3389/fphar.2012.00063

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen SR, Cai YQ, Pan HL (2009) Plasticity and emerging role of BKCa channels in nociceptive control in neuropathic pain. J Neurochem 110:352–362. https://doi.org/10.1111/j.1471-4159.2009.06138.x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang S, Chen T, Suo Q, Shi R, Khan H, Ma Y et al (2021) BK channel-mediated microglial phagocytosis alleviates neurological deficit after ischemic stroke. Front Cell Neurosci 15:683769. https://doi.org/10.3389/fncel.2021.683769

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sun X (2023) BK channels in microglia. Brain Sci Adv 9:15–23. https://doi.org/10.26599/BSA.2023.9050001

Article  Google Scholar 

Schilling T, Eder C (2007) Ion channel expression in resting and activated microglia of hippocampal slices from juvenile mice. Brain Res 1186:21–28. https://doi.org/10.1016/j.brainres.2007.10.027

Article  CAS  PubMed  Google Scholar 

Hayashi Y, Kawaji K, Sun L, Zhang X, Koyano K, Yokoyama T et al (2011) Microglial Ca2+-activated K+ channels are possible molecular targets for the analgesic effects of S-ketamine on neuropathic pain. J Neurosci 31:17370–17382. https://doi.org/10.1523/jneurosci.4152-11.2011

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hayashi Y, Morinaga S, Zhang J, Satoh Y, Meredith AL, Nakata T et al (2016) BK channels in microglia are required for morphine-induced hyperalgesia. Nat Commun 7:11697. https://doi.org/10.1038/ncomms11697

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ma J, Wang J, Deng K, Gao Y, Xiao W, Hou J et al (2022) The effect of MaxiK channel on regulating the activation of NLRP3 inflammasome in rats of blast-induced traumatic brain injury. Neuroscience 482:132–142. https://doi.org/10.1016/j.neuroscience.2021.12.019

Article  CAS  PubMed  Google Scholar 

Yang X, Wang G, Cao T, Zhang L, Ma Y, Jiang S et al (2019) Large-conductance calcium-activated potassium channels mediate lipopolysaccharide-induced activation of murine microglia. J Biol Chem 294:12921–12932. https://doi.org/10.1074/jbc.RA118.006425

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif