6-Hydroxy-2,2,4-trimethyl-1,2,3,4-tetrahydroquinoline Demonstrates Neuroprotective Properties in Experimental Parkinson's Disease by Enhancing the Antioxidant System, Normalising Chaperone Activity and Suppressing Apoptosis

Bloem BR, Okun MS, Klein C (2021) Parkinson’s disease. Lancet 397(10291):2284–2303. https://doi.org/10.1016/S0140-6736(21)00218-X

Article  CAS  PubMed  Google Scholar 

Korczyn AD, Balash Y, Gurevich T (2017) Parkinson’s disease. In: Stella R (ed) Quah, international encyclopedia of public health, 2nd edn. Academic Press, Tel Aviv, pp 409–415

Chapter  Google Scholar 

Jankovic J, Tan EK (2020) Parkinson’s disease: etiopathogenesis and treatment. J Neurol Neurosurg Psychiatry 91:795–808. https://doi.org/10.1136/jnnp-2019-322338

Article  PubMed  Google Scholar 

Percário S, Barbosa AS, Varela ELP et al (2020) Oxidative stress in Parkinson’s disease: potential benefits of antioxidant supplementation. Oxid Med Cell Longev 2020:2360872. https://doi.org/10.1155/2020/2360872

Article  PubMed  PubMed Central  Google Scholar 

Erekat SN (2018) Apoptosis and its role in Parkinson’s disease. In: Stoker BT, Greenland JC (eds) Parkinson’s disease: pathogenesis and clinical aspects. Codon Publications, Brisbane, pp 65–82

Chapter  Google Scholar 

Li H, Yang J, Wang Y et al (2019) Neuroprotective effects of increasing levels of HSP70 against neuroinflammation in Parkinson’s disease model by inhibition of NF-κB and STAT3. Life Sci 234:116747. https://doi.org/10.1016/j.lfs.2019.116747

Article  CAS  PubMed  Google Scholar 

Jayaram S, Krishnamurthy PT (2021) Role of microgliosis, oxidative stress and associated neuroinflammation in the pathogenesis of Parkinson’s disease: the therapeutic role of Nrf2 activators. Neurochem Int 145:105014. https://doi.org/10.1016/j.neuint.2021.105014

Article  CAS  PubMed  Google Scholar 

Iskusnykh IY, Zakharova AA, Pathak D (2022) Glutathione in brain disorders and aging. Molecules 27:324. https://doi.org/10.3390/molecules27010324

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hemmati-Dinarvand M, Saedi S, Valilo M et al (2019) Oxidative stress and Parkinson’s disease: conflict of oxidant-antioxidant systems. Neurosci Lett 709:134296. https://doi.org/10.1016/j.neulet.2019.134296

Article  CAS  PubMed  Google Scholar 

Johnson ME, Bobrovskaya L (2015) An update on the rotenone models of Parkinson’s disease: their ability to reproduce the features of clinical disease and model gene–environment interactions. Neurotoxicology 46:101–116. https://doi.org/10.1016/j.neuro.2014.12.002

Article  CAS  PubMed  Google Scholar 

El-Saghier AM, El-Naggar M, Hussein AHM et al (2021) Eco-friendly synthesis, biological evaluation, and in silico molecular docking approach of some new quinoline derivatives as potential antioxidant and antibacterial agents. Front Chem 9:679967. https://doi.org/10.3389/fchem.2021.679967

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wen X, Wang SB, Liu DC et al (2015) Synthesis and evaluation of the anti-inflammatory activity of quinoline derivatives. Med Chem Res 24:2591–2603. https://doi.org/10.1007/s00044-015-1323-y

Article  CAS  Google Scholar 

Kumar S, Bawa S, Gupta H (2009) Biological activities of quinoline derivatives. Mini-Rev Med Chem 9:1648–1654. https://doi.org/10.2174/138955709791012247

Article  CAS  PubMed  Google Scholar 

Xu H, Chen W, Zhan P et al (2015) 8-Hydroxyquinoline: a privileged structure with a broad-ranging pharmacological potential. MedChemComm 6(1):61–74. https://doi.org/10.1039/C4MD00284A

Article  CAS  Google Scholar 

Savić-Gajić IM, Savić IM (2020) Drug design strategies with metal-hydroxyquinoline complexes. Expert Opin Drug Discov 15(3):383–390. https://doi.org/10.1080/17460441.2020.1702964

Article  CAS  PubMed  Google Scholar 

Budimir A, Humbert N, Elhabiri M et al (2011) Hydroxyquinoline based binders: promising ligands for chelatotherapy? J Inorg Biochem 105(3):490–496. https://doi.org/10.1016/j.jinorgbio.2010.08.014

Article  CAS  PubMed  Google Scholar 

Deraeve C, Boldron C, Maraval A et al (2008) Preparation and study of new poly-8-hydroxyquinoline chelators for an anti-Alzheimer strategy. Chemistry A 14:682–696. https://doi.org/10.1002/chem.200701024

Article  CAS  Google Scholar 

LeVine H, Ding Q, Walker JA et al (2009) Clioquinol and other hydroxyquinoline derivatives inhibit Aβ(1–42) oligomer assembly. Neurosci Lett 465(1):99–103. https://doi.org/10.1016/j.neulet.2009.08.002

Article  CAS  PubMed  PubMed Central  Google Scholar 

Orhan Puskullu M, Tekiner B, Suzen S (2013) Recent studies of antioxidant quinoline derivatives. Mini Rev Med Chem 13:365–372. https://doi.org/10.2174/138955713804999793

Article  CAS  PubMed  Google Scholar 

Iskusnykh IY, Kryl’skii ED, Brazhnikova DA, et al (2021) Novel antioxidant, deethylated ethoxyquin, protects against carbon tetrachloride induced hepatotoxicity in rats by inhibiting NLRP3 inflammasome activation and apoptosis. Antioxidant 10:122. https://doi.org/10.3390/antiox10010122

Article  CAS  Google Scholar 

Kryl’skii ED, Razuvaev GA, Popova TN, et al (2023) 6-Hydroxy-2,2,4-trimethyl-1,2,3,4-tetrahydroquinoline alleviates oxidative stress and NF-κB-mediated inflammation in rats with experimental Parkinson’s disease. Curr Issues Mol Biol 45:7653–7667. https://doi.org/10.3390/cimb45090483

Article  CAS  PubMed  Google Scholar 

Ivanov YA, Zaichenko NL, Rykov SV et al (1979) The synthesis of hydroxy, acyloxy, oxo, N-oxides oxo and morpholino derivatives of hydrogenated quinolines and the study of their radical analogs by ESR. Bull Acad Sci USSR Div Chem Sci 28:1661–1668

Article  Google Scholar 

Rybakov VB, Alekseev NV, Sheludyakov VD et al (2004) 6-Ethoxy-1,2,3,4-tetrahydro-2,2,4-trimethylquinoline. Acta Crystallogr Sect E: Struct Rep Online 60:1145–1146. https://doi.org/10.1107/S1600536804013121

Article  CAS  Google Scholar 

Liu HB, Wang L, Su WW, Xie XQ (2014) ALzPlatform: an Alzheimer’s disease domain-specific chemogenomics knowledgebase for polypharmacology and target identification research. J Comput Info Model 54:1050–1060. https://doi.org/10.1021/ci500004h

Article  CAS  Google Scholar 

Ablat N, Lv D, Ren R et al (2016) Neuroprotective effects of a standardized flavonoid extract from safflower against a rotenone-induced rat model of Parkinson’s disease. Molecules 21:1107. https://doi.org/10.3390/molecules21091107

Article  CAS  PubMed  PubMed Central  Google Scholar 

Iskusnykh IY, Kryl’skii ED, Brazhnikova DA et al (2021) Novel antioxidant, deethylated ethoxyquin, protects against carbon tetrachloride induced hepatotoxicity in rats by inhibiting NLRP3 inflammasome activation and apoptosis. Antioxidants 10:122. https://doi.org/10.3390/antiox10010122

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hayes MT (2019) Parkinson’s disease and Parkinsonism. Am J Med 132:802–807. https://doi.org/10.1016/j.amjmed.2019.03.001

Article  PubMed  Google Scholar 

Sharma S, Kumar P, Deshmukh R (2018) Neuroprotective potential of spermidine against rotenone induced Parkinson’s disease in rats. Neurochem Int 116:104–111. https://doi.org/10.1016/j.neuint.2018.02.010

Article  CAS  PubMed  Google Scholar 

Park HJ, Lee PH, Bang OY et al (2008) Mesenchymal stem cells therapy exerts neuroprotection in a progressive animal model of Parkinson’s disease. J Neurochem 107:141–151. https://doi.org/10.1111/j.1471-4159.2008.05589.x

Article  CAS  PubMed  Google Scholar 

Zhu W, Chi N, Zou P et al (2017) Effect of docosahexaenoic acid on traumatic brain injury in rats. Exp Ther Med 14:4411–4416. https://doi.org/10.3892/etm.2017.5054

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hu C, Luo Y, Wang H et al (2017) Re-evaluation of the interrelationships among the behavioral tests in rats exposed to chronic unpredictable mild stress. PLoS ONE 12:e0185129. https://doi.org/10.1371/journal.pone.0185129

Article  CAS  PubMed  PubMed Central  Google Scholar 

Piskarev IM, Trofimova SV, Burkhina OE, Ivanova IP (2015) Investigation of the level of free-radical processes in substrates and biological samples using induced chemiluminescence. Biophysics 60(3):400–408

Article  CAS  Google Scholar 

Nishikimi M, Rao NA, Yagi K (1972) The occurrence of superoxide anion in the reaction of reduced phenazine methosulphate and molecular oxygen. Biochem Biophys Res Co 46:849–864. https://doi.org/10.1016/s0006-291x(72)80218-3

Article  CAS  Google Scholar 

Góth L (1991) A simple method for determination of serum catalase activity and revision of reference range. Clin Chim Acta 196:143–151. https://doi.org/10.1016/0009-8981(91)90067-m

Article  PubMed  Google Scholar 

Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. Lab Clin Med 70:158–169

CAS  Google Scholar 

Zanetti G (1979) Rabbit liver glutathione reductase. Purification and properties. Arch Biochem Biophys 198:241–246. https://doi.org/10.1016/0003-9861(79)90415-6

留言 (0)

沒有登入
gif