Krueger JM, Frank MG, Wisor JP, Roy S (2016) Sleep function: toward elucidating an enigma. Sleep Med Rev 28:46–54
2.Imeri L, Opp MR (2009) How (and why) the immune system makes us sleep. Nat Rev Neurosci 10:199–210
CAS PubMed PubMed Central Google Scholar
3.Toth LA, Tolley EA, Krueger JM (1993) Sleep as a prognostic indicator during infectious disease in rabbits. Proc Soc Exp Biol Med 203:179–192
4.Heiss WD, Pawlik G, Herholz K, Wagner R, Wienhard K (1985) Regional cerebral glucose metabolism in man during wakefulness, sleep, and dreaming. Brain Res 327:362–366
5.Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, O’Donnell J, Christensen DJ, Nicholson C, Iliff JJ, Takano T, Deane R, Nedergaard M (2013) Sleep drives metabolite clearance from the adult brain. Science 342:373–377
CAS PubMed PubMed Central Google Scholar
6.Chambers AM (2017) The role of sleep in cognitive processing: focusing on memory consolidation. Wiley Interdiscip Rev Cogn Sci 8:e1433
7.Frank MG, Cantera R (2014) Sleep, clocks, and synaptic plasticity. Trends Neurosci 37:491–501
CAS PubMed PubMed Central Google Scholar
8.Tononi G, Cirelli C (2014) Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory consolidation and integration. Neuron 81:12–34
CAS PubMed PubMed Central Google Scholar
9.Tononi G, Cirelli C (2006) Sleep function and synaptic homeostasis. Sleep Med Rev 10:49–62
10.Tononi G, Cirelli C (2003) Sleep and synaptic homeostasis: a hypothesis. Brain Res Bull 62:143–150
11.Vyazovskiy VV, Cirelli C, Pfister-Genskow M, Faraguna U, Tononi G (2008) Molecular and electrophysiological evidence for net synaptic potentiation in wake and depression in sleep. Nat Neurosci 11:200–208
12.Ribeiro S (2012) Sleep and plasticity. Pflugers Arch 463:111–120
13.Ribeiro S, Nicolelis MAL (2004) Reverberation, storage, and postsynaptic propagation of memories during sleep. Learn Mem 11:686–696
PubMed PubMed Central Google Scholar
14.Frank MG (2012) Erasing synapses in sleep: is it time to be SHY? Neural Plast 2012: 264378
15.Durmer JS, Dinges DF (2005) Neurocognitive consequences of sleep deprivation. Semin Neurol 25:117–129
16.Tobaldini E, Costantino G, Solbiati M, Cogliati C, Kara T, Nobili L, Montano N (2017) Sleep, sleep deprivation, autonomic nervous system and cardiovascular diseases. Neurosci Biobehav Rev 74:321–329
17.Rechtschaffen A, Bergmann BM, Everson CA, Kushida CA, Gilliland MA (1989) Sleep deprivation in the rat: X. Integration and discussion of the findings. Sleep 12:68–87
18.Vaccaro A, Dor YK, Nambara K, Pollina EA, Lin C, Greenberg ME, Rogulja D (2020) Sleep loss can cause death through accumulation of reactive oxygen species in the gut. Cell 181:1307–1328
19.Brown MK, Naidoo N (2010) The UPR and the anti-oxidant response: relevance to sleep and sleep loss. Mol Neurobiol 42:103–113
20.Periasamy S, Hsu DZ, Fu YH, Liu MY (2015) Sleep deprivation-induced multi-organ injury: role of oxidative stress and inflammation. EXCLI J 14:672–683
PubMed PubMed Central Google Scholar
21.O’Callaghan EK, Green EW, Franken P, Mongrain V (2019) Omics approaches in sleep-wake regulation. Handb Exp Pharmacol 253:59–81
22.O’Hara BF, Ding J, Bernat RL, Franken P (2007) Genomic and proteomic approaches towards an understanding of sleep. CNS Neurol Disord Drug Targets 6:71–81
23.Wang Z, Ma J, Miyoshi C, Li Y, Sato M, Ogawa Y, Lou T, Ma C, Gao X, Lee C, Fujiyama T, Yang X, Zhou S, Hotta-Hirashima N, Klewe-Nebenius D, Ikkyu A, Kakizaki M, Kanno S, Cao L, Takahashi S, Peng J, Yu Y, Funato H, Yanagisawa M, Liu Q (2018) Quantitative phosphoproteomic analysis of the molecular substrates of sleep need. Nature 558:435–439
CAS PubMed PubMed Central Google Scholar
24.Diering GH, Nirujogi RS, Roth RH, Worley PF, Pandey A, Huganir RL (2017) Homer1a drives homeostatic scaling-down of excitatory synapses during sleep. Science 355:511–515
CAS PubMed PubMed Central Google Scholar
25.Noya SB, Colameo D, Brüning F, Spinnler A, Mircsof D, Opitz L, Mann M, Tyagarajan SK, Robles MS, Brown SA (2019) The forebrain synaptic transcriptome is organized by clocks but its proteome is driven by sleep. Science 366:eaav2642
26.Brüning F, Noya SB, Bange T, Koutsouli S, Rudolph JD, Tyagarajan SK, Cox J, Mann M, Brown SA, Robles MS (2019) Sleep-wake cycles drive daily dynamics of synaptic phosphorylation. Science 366:eaav3617
27.Krone LB, Yamagata T, Blanco-Duqne C, Guillaumin MCC, Kahn MC, van der Vinne V, McKillop LE, Tam SKE, Peirson SN, Akerman CJ, Hoerder-Saubedissen A, Molnar Z, Vyazovskiy VV (2021) A role for the cortex in sleep-wake regulation. Nat Neurosci 24:1210–1215
CAS PubMed PubMed Central Google Scholar
28.Phillips GR, Huang JK, Wang Y, Tanaka H, Shapiro L, Zhang W, Shan WS, Arndt K, Frank M, Gordon RE, Gawinowicz MA, Zhao Y, Colman DR (2001) The presynaptic particle web: ultrastructure, composition, dissolution, and reconstitution. Neuron 32:63–77
29.Hahn CG, Banerjee A, Macdonald ML, Cho DS, Kamins J, Nie Z, Borgmann-Winter KE, Grosser T, Pizarro A, Ciccimaro E, Arnold SE, Wang HY, Blair IA (2009) The post-synaptic density of human postmortem brain tissues: an experimental study paradigm for neuropsychiatric illnesses. PLoS One 4:e5251
PubMed PubMed Central Google Scholar
30.Gulyassy P, Puska G, Gyorffy BA, Todorov-Völgyi K, Juhasz G, Drahos L, Kekesi KA (2020) Proteomic comparison of different synaptosome preparation procedures. Amino Acids 52:1529–1543
CAS PubMed PubMed Central Google Scholar
31.Wiśniewski JR, Zougman A, Nagaraj N, Mann M (2009) Universal sample preparation method for proteome analysis. Nat Methods 6:359–36
32.Benarroch EE (2012) GABAB receptors: structure, functions, and clinical implications. Neurology 78:578–584
33.Pinard A, Seddik R, Bettler B (2010) GABAB receptors: physiological functions and mechanisms of diversity. Adv Pharmacol 58:231–255
34.Agosto J, Choi JC, Parisky KM, Stilwell G, Rosbash M, Griffith LC (2008) Modulation of GABAA receptor desensitization uncouples sleep onset and maintenance in Drosophila. Nat Neurosci 11:354–359
CAS PubMed PubMed Central Google Scholar
35.Fuller DE, Hornfeldt CS (2003) From club drug to orphan drug: sodium oxybate (Xyrem) for the treatment of cataplexy. Pharmacotherapy 23:1205–1209
36.Black J, Houghton WC (2006) Sodium oxybate improves excessive daytime sleepiness in narcolepsy. Sleep 29:939–946
37.Kantrowitz J, Citrome L, Javitt D (2009) GABA(B) receptors, schizophrenia and sleep dysfunction: a review of the relationship and its potential clinical and therapeutic implications. CNS Drugs 23:681–691
CAS PubMed PubMed Central Google Scholar
38.Deschaux O, Froestl W, Gottesmann C (2006) Influence of a GABA(B) and GABA(C) receptor antagonist on sleep-waking cycle in the rat. Eur J Pharmacol 535:177–181
39.Juhász G, Emri Z, Kékesi KA, Salfay O, Crunelli V (1994) Blockade of thalamic GABAB receptors decreases EEG synchronization. Neurosci Lett 172:155–158
40.Wisor JP, Morairty SR, Huynh NT, Steininger TL, Kilduff TS (2006) Gene expression in the rat cerebral cortex: comparison of recovery sleep and hypnotic-induced sleep. Neuroscience 141:371–378
41.Guillaumond F, Becquet D, Bosler O, François-Bellan AM (2002) Adrenergic inducibility of AP-1 binding in the rat pineal gland depends on prior photoperiod. J Neurochem 83:157–166
42.Vienne J, Bettler B, Franken P, Tafti M (2010) Differential effects of GABAB receptor subtypes, -hydroxybutyric acid, and baclofen on EEG activity and sleep regulation. J Neurosci 30:14194–14204
CAS PubMed PubMed Central Google Scholar
43.Tadavarty R, Rajput PS, Wong JM, Kumar U, Sastry BR (2011) Sleep-deprivation induces changes in GABA(B) and mGlu receptor expression and has consequences for synaptic long-term depression. PLoS One 6:e24933
CAS PubMed PubMed Central Google Scholar
44.Younis RM, Taylor RM, Beardsley PM, McClay JL (2019) The ANKS1B gene and its associated phenotypes: focus on CNS drug response. Pharmacogenomics 20:669–684
CAS PubMed PubMed Central Google Scholar
45.Dosemeci A, Toy D, Burch A, Bayer KU, Tao-Cheng JH (2016) CaMKII-mediated displacement of AIDA-1 out of the postsynaptic density core. FEBS Lett 590:2934–2939
CAS PubMed PubMed Central Google Scholar
46.Tindi JO, Chávez AE, Cvejic S, Calvo-Ochoa E, Castillo PE, Jordan BA (2015) ANKS1B gene product AIDA-1 controls hippocampal synaptic transmission by regulating GluN2B subunit localization. J Neurosci 35:8986–8996
CAS PubMed PubMed Central Google Scholar
47.Carbonell AU, Cho CH, Tindi JO, Counts PA, Bates JC, Erdjument-Bromage H, Cvejic S, Iaboni A, Kvint I, Rosensaft J, Banne E, Anagnostou E, Neubert TA, Scherer SW, Molholm S, Jordan BA (2019) Haploinsufficiency in the ANKS1B gene encoding AIDA-1 leads to a neurodevelopmental syndrome. Nat Commun 10:3529
留言 (0)