Lower Circulating Gas6 Levels Are Associated with Bulbar Phenotype and Faster Disease Progression in Amyotrophic Lateral Sclerosis Patients

Keon M, Musrie B, Dinger M et al (2021) Destination amyotrophic lateral sclerosis. Front Neurol 12:596006. https://doi.org/10.3389/fneur.2021.596006

Chio A, Moglia C, Canosa A et al (2020) ALS phenotype is influenced by age, sex, and genetics: a population-based study. Neurol 94(8):e802–e810. https://doi.org/10.1212/WNL.0000000000008869

D’amico E, Pasmantier M, Lee YW et al (2013) Clinical evolution of pure upper motor neuron disease/dysfunction (PUMMD). Muscle Nerve 47(1):28–32. https://doi.org/10.1002/mus.23496

Gordon PH, Cheng B, Katz IB et al (2009) Clinical features that distinguish PLS, upper motor neuron-dominant ALS, and typical ALS. Neurol 72(22):1948–1952. https://doi.org/10.1212/WNL.0b013e3181a8269b

Masrori P, Van Damme P (2020) Amyotrophic lateral sclerosis: a clinical review. Eur J Neurol 27(10):1918–1929

Article  CAS  PubMed  Google Scholar 

Shellikeri S, Karthikeyan V, Martino R et al (2017) The neuropathological signature of bulbar-onset ALS: a systematic review. Neurosci Biobehav Rev 75:378–392

Article  CAS  PubMed  PubMed Central  Google Scholar 

Strong MJ, Abrahams S, Goldstein LH et al (2017) Amyotrophic lateral sclerosis - frontotemporal spectrum disorder (ALS-FTSD): revised diagnostic criteria. Amyotroph Lateral Scler Frontotemporal Degener 18(3–4):153–174. https://doi.org/10.1080/21678421.2016.1267768

Article  PubMed  PubMed Central  Google Scholar 

Prasad A, Bharathi V, Sivalingam V et al (2019) Molecular mechanisms of TDP-43 misfolding and pathology in amyotrophic lateral sclerosis. Front Mol Neurosci 12:25. https://doi.org/10.3389/fnmol.2019.00025

Article  CAS  PubMed  PubMed Central  Google Scholar 

Megat S, Mora N, Sanogo J et al (2023) Integrative genetic analysis illuminates ALS heritability and identifies risk genes. Nat Commun 14(1):342. https://doi.org/10.1038/s41467-022-35724-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Trojsi F, D’alvano G, Bonavita S, Tedeschi G (2020) Genetics and sex in the pathogenesis of amyotrophic lateral sclerosis (Als): Is there a link? Int J Mol Sci 21(10):3647

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shankar SL, O’Guin K, Cammer M et al (2003) The growth arrest-specific gene product Gas6 promotes the survival of human oligodendrocytes via a phosphatidylinositol 3-kinase-dependent pathway. J Neurosci 23(10):4208–18. https://doi.org/10.1523/jneurosci.23-10-04208.2003

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lemke G (2013) Biology of the TAM receptors. Cold Spring Harb Perspect Biol 5(11):a009076–a009076. https://doi.org/10.1101/cshperspect.a009076

Article  CAS  PubMed  PubMed Central  Google Scholar 

Linger RMA, Keating AK, Earp HS, Graham DK (2008) TAM receptor tyrosine kinases: biologic functions, signaling, and potential therapeutic targeting in human cancer. Adv Cancer Res 100:35–83

Article  CAS  PubMed  PubMed Central  Google Scholar 

Smirne C, Rigamonti C, De Benedittis C et al (2019) Gas6/TAM signaling components as novel biomarkers of liver fibrosis. Dis Markers 2019:1–15

Article  Google Scholar 

Pagani S, Bellan M, Mauro D et al (2020) New insights into the role of Tyro3, Axl, and Mer receptors in rheumatoid arthritis. Dis Markers 2020:1–9

Article  Google Scholar 

Huang Y, Happonen KE, Burrola PG et al (2021) Microglia use TAM receptors to detect and engulf amyloid β plaques. Nat Immunol 22(5):586–594. https://doi.org/10.1038/s41590-021-00913-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tondo G, Perani D, Comi C (2019) TAM receptor pathways at the crossroads of neuroinflammation and neurodegeneration. Dis Markers 2019:1–13

Article  Google Scholar 

Binder MD, Cate HS, Prieto AL et al (2008) Gas6 deficiency increases oligodendrocyte loss and microglial activation in response to cuprizone-induced demyelination. J Neurosci 28(20):5195–206. https://doi.org/10.1523/JNEUROSCI.1180-08.2008

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ashton NJ, Janelidze S, Al Khleifat A et al (2021) A multicentre validation study of the diagnostic value of plasma neurofilament light. Nat Commun 12(1):3400. https://doi.org/10.1038/s41467-021-23620-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kang MJY, Eratne D, Dobson H et al (2024) Cerebrospinal fluid neurofilament light predicts longitudinal diagnostic change in patients with psychiatric and neurodegenerative disorders. Acta Neuropsychiatr 36(1):17–28. https://doi.org/10.1017/neu.2023.25

Article  PubMed  Google Scholar 

Brooks BR, Miller RG, Swash M, Munsat TL (2000) El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis 1(5):293–9. https://doi.org/10.1080/146608200300079536

Article  CAS  PubMed  Google Scholar 

Gille B, De Schaepdryver M, Dedeene L et al (2019) Inflammatory markers in cerebrospinal fluid: independent prognostic biomarkers in amyotrophic lateral sclerosis? J Neurol Neurosurg Psychiatry 90(12):1338–1346. https://doi.org/10.1136/jnnp-2018-319586

Article  PubMed  Google Scholar 

De Schaepdryver M, Lunetta C, Tarlarini C et al (2020) Neurofilament light chain and C reactive protein explored as predictors of survival in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 91(4):436–437

Article  PubMed  Google Scholar 

Thompson AG, Gray E, Verber N et al (2022) Multicentre appraisal of amyotrophic lateral sclerosis biofluid biomarkers shows primacy of blood neurofilament light chain. Brain Commun 4(1):fcac029. https://doi.org/10.1093/braincomms/fcac029

Marin B, Desport JC, Kajeu P et al (2011) Alteration of nutritional status at diagnosis is a prognostic factor for survival of amyotrophic lateral sclerosis patients. J Neurol Neurosurg Psychiatry 82(6):628–34. https://doi.org/10.1136/jnnp.2010.211474

Article  CAS  PubMed  Google Scholar 

Wang MD, Little J, Gomes J et al (2017) Identification of risk factors associated with onset and progression of amyotrophic lateral sclerosis using systematic review and meta-analysis. Neurotoxicol 61:101–130. https://doi.org/10.1016/j.neuro.2016.06.015

Article  CAS  Google Scholar 

Limousin N, Blasco H, Corcia P et al (2010) Malnutrition at the time of diagnosis is associated with a shorter disease duration in ALS. J Neurol Sci 297(1–2):36–9. https://doi.org/10.1016/j.jns.2010.06.028

Article  PubMed  Google Scholar 

Jawaid A, Murthy SB, Wilson AM et al (2010) A decrease in body mass index is associated with faster progression of motor symptoms and shorter survival in ALS. Amyotrophic Lateral Sclerosis 11(6):542–8. https://doi.org/10.3109/17482968.2010.482592

Article  PubMed  Google Scholar 

Kläppe U, Sennfält S, Lovik A et al (2023) Neurodegenerative biomarkers outperform neuroinflammatory biomarkers in amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener. https://doi.org/10.1080/21678421.2023.2263874

Verde F, Milone I, Colombo E et al (2023) Phenotypic correlates of serum neurofilament light chain levels in amyotrophic lateral sclerosis. Front Aging Neurosci 15:1132808. https://doi.org/10.3389/fnagi.2023.1132808

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tang J, Jin Y, Jia F et al (2023) Gas6 promotes microglia efferocytosis and suppresses inflammation through activating Axl/Rac1 signaling in subarachnoid hemorrhage mice. Transl Stroke Res 14(6):955–969. https://doi.org/10.1007/s12975-022-01099-0

Article  CAS  PubMed  Google Scholar 

Wu G, McBride DW, Zhang JH (2018) Axl activation attenuates neuroinflammation by inhibiting the TLR/TRAF/NF-κB pathway after MCAO in rats. Neurobiol Dis 110:59–67. https://doi.org/10.1016/j.nbd.2017.11.009

Article  CAS  PubMed  Google Scholar 

Tong LS, Shao AW, Ou YB et al (2017) Recombinant Gas6 augments Axl and facilitates immune restoration in an intracerebral hemorrhage mouse model. J Cereb Blood Flow Metab 37(6):1971–1981. https://doi.org/10.1177/0271678X16658490

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif