Björkhem I, Meaney S (2004) Brain cholesterol: long secret life behind a barrier. Arterioscler Thromb Vasc Biol 806–815. https://doi.org/10.1161/01.ATV.0000120374.59826.1b
Zhang J, Liu Q (2015) Cholesterol metabolism and homeostasis in the brain. Protein Cell 254–264. https://doi.org/10.1007/s13238-014-0131-3
Genaro-Mattos TC, Anderson A, Allen LB, Korade Z, Mirnics K (2019) Cholesterol biosynthesis and uptake in developing neurons. ACS Chem Neurosci 3671–3681. https://doi.org/10.1021/acschemneuro.9b00248
Liu Q, Trotter J, Zhang J, Peters MM, Cheng H, Bao J et al (2010) Neuronal LRP1 knockout in adult mice leads to impaired brain lipid metabolism and progressive, age-dependent synapse loss and neurodegeneration. J Neurosci 17068–17078. https://doi.org/10.1523/jneurosci.4067-10.2010
Hannah MJ, Schmidt AA, Huttner WB (1999) Synaptic vesicle biogenesis. Annu Rev Cell Dev Biol 733–798. https://doi.org/10.1146/annurev.cellbio.15.1.733
Yue HY, Xu J (2015) Cholesterol regulates multiple forms of vesicle endocytosis at a mammalian central synapse. J Neurochem 247–260. https://doi.org/10.1111/jnc.13129
Barnes-Vélez JA, Aksoy Yasar FB, Hu J (2023) Myelin lipid metabolism and its role in myelination and myelin maintenance. Innovation (Camb) 100360.https://doi.org/10.1016/j.xinn.2022.100360
Brown MS, Goldstein JL (1997) The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 331–340. https://doi.org/10.1016/s0092-8674(00)80213-5
Wang B, Tontonoz P (2018) Liver X receptors in lipid signalling and membrane homeostasis. Nat Rev Endocrinol 452–463. https://doi.org/10.1038/s41574-018-0037-x
Vitali C, Wellington CL, Calabresi L (2014) HDL and cholesterol handling in the brain. Cardiovasc Res 405–413. https://doi.org/10.1093/cvr/cvu148
Saher G, Stumpf SK (2015) Cholesterol in myelin biogenesis and hypomyelinating disorders. Biochim Biophys Acta 1083–1094. https://doi.org/10.1016/j.bbalip.2015.02.010
Nieweg K, Schaller H, Pfrieger FW (2009) Marked differences in cholesterol synthesis between neurons and glial cells from postnatal rats. J Neurochem 125–134. https://doi.org/10.1111/j.1471-4159.2009.05917.x
Camargo N, Goudriaan A, van Deijk AF, Otte WM, Brouwers JF, Lodder H et al (2017) Oligodendroglial myelination requires astrocyte-derived lipids. PLoS Biol e1002605. https://doi.org/10.1371/journal.pbio.1002605
Barres BA, Smith SJ (2001) Neurobiology. Cholesterol--making or breaking the synapse. Science 1296–1297. https://doi.org/10.1126/science.1066724
Rodwell VW, Nordstrom JL, Mitschelen JJ (1976) Regulation of HMG-CoA reductase. Adv Lipid Res 1–74.https://doi.org/10.1016/b978-0-12-024914-5.50008-5
Debose-Boyd RA (2008) Feedback regulation of cholesterol synthesis: sterol-accelerated ubiquitination and degradation of HMG CoA reductase. Cell Res 609–621. https://doi.org/10.1038/cr.2008.61
Xiong H, Callaghan D, Jones A, Walker DG, Lue LF, Beach T G et al (2008) Cholesterol retention in Alzheimer’s brain is responsible for high beta- and gamma-secretase activities and Abeta production. Neurobiol Dis 422–437. https://doi.org/10.1016/j.nbd.2007.10.005
Cutler RG, Kelly J, Storie K, Pedersen WA, Tammara A, Hatanpaa K et al (2004) Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer’s disease. Proc Natl Acad Sci U S A 2070–2075. https://doi.org/10.1073/pnas.0305799101
Turri M, Conti E, Pavanello C, Gastoldi F, Palumbo M, Bernini F et al (2023) Plasma and cerebrospinal fluid cholesterol esterification is hampered in Alzheimer’s disease. Alzheimers Res Ther 95. https://doi.org/10.1186/s13195-023-01241-6
Del Toro D, Xifró X, Pol A, Humbert S, Saudou F, Canals JM et al (2010) Altered cholesterol homeostasis contributes to enhanced excitotoxicity in Huntington’s disease. J Neurochem 153–167. https://doi.org/10.1111/j.1471-4159.2010.06912.x
Valenza M, Rigamonti D, Goffredo D, Zuccato C, Fenu S, Jamot L et al (2005) Dysfunction of the cholesterol biosynthetic pathway in Huntington’s disease. J Neurosci 9932–9939. https://doi.org/10.1523/jneurosci.3355-05.2005
Leoni V, Mariotti C, Tabrizi SJ, Valenza M, Wild EJ, Henley SM et al (2008) Plasma 24S-hydroxycholesterol and caudate MRI in pre-manifest and early Huntington’ s disease. Brain 2851–2859. https://doi.org/10.1093/brain/awn212
Berghoff SA, Spieth L, Sun T, Hosang L, Schlaphoff L, Depp C et al (2021) Microglia facilitate repair of demyelinated lesions via post-squalene sterol synthesis. Nat Neurosci 47–60. https://doi.org/10.1038/s41593-020-00757-6
Kim WS, Weickert CS, Garner B (2008) Role of ATP-binding cassette transporters in brain lipid transport and neurological disease. J Neurochem 1145–1166. https://doi.org/10.1111/j.1471-4159.2007.05099.x
Rushworth JV, Griffiths HH, Watt NT, Hooper NM (2013) Prion protein-mediated toxicity of amyloid-β oligomers requires lipid rafts and the transmembrane LRP1. J Biol Chem 8935–8951. https://doi.org/10.1074/jbc.M112.400358
García-Sanz P, J M F G A, Moratalla R (2021) The role of cholesterol in α-Synuclein and Lewy body pathology in GBA1 Parkinson’s disease. Mov Disord 1070–1085. https://doi.org/10.1002/mds.28396
Meaney S, Bodin K, Diczfalusy U, Björkhem I (2002) On the rate of translocation in vitro and kinetics in vivo of the major oxysterols in human circulation: critical importance of the position of the oxygen function. J Lipid Res 2130–2135. https://doi.org/10.1194/jlr.m200293-jlr200
Dai L, Zou L, Meng L, Qiang G, Yan M, Zhang Z (2021) Cholesterol metabolism in neurodegenerative diseases: molecular mechanisms and therapeutic targets. Mol Neurobiol 2183–2201. https://doi.org/10.1007/s12035-020-02232-6
Panzenboeck U, Balazs Z, Sovic A, Hrzenjak A, Levak-Frank S, Wintersperger A et al (2002) ABCA1 and scavenger receptor class B, type I, are modulators of reverse sterol transport at an in vitro blood-brain barrier constituted of porcine brain capillary endothelial cells. J Biol Chem 42781–42789. https://doi.org/10.1074/jbc.M207601200
Bryleva EY, Rogers MA, Chang CC, Buen F, Harris BT, Rousselet E et al (2010) ACAT1 gene ablation increases 24(S)-hydroxycholesterol content in the brain and ameliorates amyloid pathology in mice with AD. Proc Natl Acad Sci U S A 3081–3086. https://doi.org/10.1073/pnas.0913828107
Wüstner D, Mondal M, Tabas I, Maxfield FR (2005) Direct observation of rapid internalization and intracellular transport of sterol by macrophage foam cells. Traffic 396–412. https://doi.org/10.1111/j.1600-0854.2005.00285.x
Brown MS, Radhakrishnan A, Goldstein JL (2018) Retrospective on cholesterol homeostasis: the central role of scap. Annu Rev Biochem 783–807. https://doi.org/10.1146/annurev-biochem-062917-011852
Tsai YC, Leichner GS, Pearce MM, Wilson GL, Wojcikiewicz RJ, Roitelman J et al (2012) Differential regulation of HMG-CoA reductase and Insig-1 by enzymes of the ubiquitin-proteasome system. Mol Biol Cell 4484–4494. https://doi.org/10.1091/mbc.E12-08-0631
Gong X, Qian H, Shao W, LI J, Wu J, Liu JJ et al (2016) Complex structure of the fission yeast SREBP-SCAP binding domains reveals an oligomeric organization. Cell Res 1197–1211. https://doi.org/10.1038/cr.2016.123
Goldstein JL, Debose-Boyd RA, Brown MS (2006) Protein sensors for membrane sterols. Cell 35–46. https://doi.org/10.1016/j.cell.2005.12.022
Bilotta MT, Petillo S, Santoni A, Cippitelli M (2020) Liver X receptors: regulators of cholesterol metabolism, inflammation, autoimmunity, and cancer. Front Immunol 584303. https://doi.org/10.3389/fimmu.2020.584303
Zorrilla Veloz RI, Mckenzie T, Palacios BE, Hu J (2022) Nuclear hormone receptors in demyelinating diseases. J Neuroendocrinol e13171. https://doi.org/10.1111/jne.13171
Zelcer N, Hong C, Boyadjian R, Tontonoz P (2009) LXR regulates cholesterol uptake through Idol-dependent ubiquitination of the LDL receptor. Science 100–104. https://doi.org/10.1126/science.1168974
Wong J, Quinn CM, Brown AJ (2006) SREBP-2 positively regulates transcription of the cholesterol efflux gene, ABCA1, by generating oxysterol ligands for LXR. Biochem J 485–491. https://doi.org/10.1042/bj20060914
Thomas DG, Doran AC, Fotakis P, Westerterp M, Antonson P, Jiang H et al (2018) LXR suppresses inflammatory gene expression and neutrophil migration through cis-repression and cholesterol efflux. Cell Rep 3774-3785. https://doi.org/10.1016/j.celrep.2018.11.100 (e3774)
Goritz C, Mauch DH, Pfrieger FW (2005) Multiple mechanisms mediate cholesterol-induced synaptogenesis in a CNS neuron. Mol Cell Neurosc 190–201. https://doi.org/10.1016/j.mcn.2005.02.006
Essayan-Perez S, Südhof TC (2023) Neuronal γ-secretase regulates lipid metabolism, linking cholesterol to synaptic dysfunction in Alzheimer’s disease. Neuron 3176–3194.e3177. https://doi.org/10.1016/j.neuron.2023.07.005
Carroll RC, Beattie EC, Von Zastrow M, Malenka RC (2001) Role of AMPA receptor endocytosis in synaptic plasticity. Nat Rev Neurosci 315–324. https://doi.org/10.1038/35072500
Hering H, Lin CC, Sheng M (2003) Lipid rafts in the maintenance of synapses, dendritic spines, and surface AMPA receptor stability. J Neurosci 3262–3271. https://doi.org/10.1523/jneurosci.23-08-03262.2003
Korinek M, Gonzalez-Gonzalez I M, Smejkalova T, Hajdukovic D, Skrenkova K, Krusek J et al (2020) Cholesterol modulates presynaptic and postsynaptic properties of excitatory synaptic transmission. Sci Rep 12651. https://doi.org/10.1038/s41598-020-69454-5
Pfrieger FW (2003) Role of cholesterol in synapse formation and function. Biochim Biophys Acta 271–280. https://doi.org/10.1016/s0005-2736(03)00024-5
Puchkov D, Haucke V (2013) Greasing the synaptic vesicle cycle by membrane lipids. Trends Cell Biol 493–503. https://doi.org/10.1016/j.tcb.2013.05.002
Bruckner RJ, Mansy SS, Ricardo A, Mahadevan L, Szostak JW (2009) Flip-flop-induced relaxation of bending energy: implications for membrane remodeling. Biophys J 3113–3122. https://doi.org/10.1016/j.bpj.2009.09.025
Binotti B, Jahn R, Pérez-Lara Á (2021) An overview of the synaptic vesicle lipid composition. Arch Biochem Biophys 108966. https://doi.org/10.1016/j.abb.2021.108966
Aeffner S, Reusch T, Weinhausen B, Salditt T (2012) Energetics of stalk intermediates in membrane fusion are controlled by lipid composition. Proc Natl Acad Sci U S A E1609–1618. https://doi.org/10.1073/pnas.1119442109
Ullian EM, Sapperstein SK, Christopherson KS, Barres BA (2001) Control of synapse number by glia. Science 657–661. https://doi.org/10.1126/science.291.5504.657
Pfrieger FW (2003) Outsourcing in the brain: do neurons depend on cholesterol delivery by astrocytes?. Bioessays 72–78. https://doi.org/10.1002/bies.10195
Dietschy JM (2009) Central nervous system: cholesterol turnover, brain development and neurodegeneration. Biol Chem 287–293. https://doi.org/10.1515/bc.2009.035
Norton WT, Poduslo SE (1973) Myelination in rat brain: changes in myelin composition during brain maturation. J Neurochem 759–773. https://doi.org/10.1111/j.1471-4159.1973.tb07520.x
Mathews ES, Appel B (2016) Cholesterol biosynthesis supports myelin gene expression and axon ensheathment through modulation of P13K/Akt/mTor signaling. J Neurosci 7628–7639. https://doi.org/10.1523/jneurosci.0726-16.2016
Valenza M, Cattaneo E (2011) Emerging roles for cholesterol in Huntington’s disease. Trends Neurosci 474–486. https://doi.org/10.1016/j.tins.2011.06.005
Blanchard JW, Akay LA, Davila-Velderrain J, von Maydell D, Mathys H, Davidson SM et al (2022) APOE4 impairs myelination via cholesterol dysregulation in oligodendrocytes. Nature 769–779. https://doi.org/10.1038/s41586-022-05439-w
Itoh N, Itoh Y, Tassoni A, Ren E, Kaito M, Ohno A et al (2018) Cell-specific and region-specific transcriptomics in the multiple sclerosis model: focus on astrocytes. Proc Natl Acad Sci U S A E302-e309. https://doi.org/10.1073/pnas.1716032115
Saher G, Brügger B, Lappe-Siefke C, Möbius W, Tozawa R, Wehr MC et al (2005) High cholesterol level is essential for myelin membrane growth. Nat Neurosci 468–475. https://doi.org/10.1038/nn1426
Molina-Gonzalez I, Holloway RK, Jiwaji Z, Dando O, Kent SA, Emelianova K et al (2023) Astrocyte-oligodendrocyte interaction regulates central nervous system regeneration. Nat Commun 3372. https://doi.org/10.1038/s41467-023-39046-8
Li D, Zhang J, Liu Q (2022) Brain cell type-specific cholesterol metabolism and implications for learning and memory. Trends Neurosci 401–414. https://doi.org/10.1016/j.tins.2022.01.002
Karch CM, Goate AM (2015) Alzheimer’s disease risk genes and mechanisms of disease pathogenesis. Biol Psychiatry 43–51. https://doi.org/10.1016/j.biopsych.2014.05.006
Loera-Valencia R, Goikolea J, Parrado-Fernandez C, Merino-Serrais P, Maioli S (2019) Alterations in cholesterol metabolism as a risk factor for developing Alzheimer’s disease: potential novel targets for treatment. J Steroid Biochem Mol Biol 104–114. https://doi.org/10.1016/j.jsbmb.2019.03.003
Barbero-Camps E, Fernández A, Martínez L, Fernández-Checa JC, Colell A (2013) APP/PS1 mice overexpressing SREBP-2 exhibit combined Aβ accumulation and tau pathology underlying Alzheimer’s disease. Hum Mol Genet 3460–3476. https://doi.org/10.1093/hmg/ddt201
Lazar AN, Bich C, Panchal M, Desbenoit N, Petit VW, Touboul D et al (2013) Time-of-flight secondary ion mass spectrometry (TOF-SIMS) imaging reveals cholesterol overload in the cerebral cortex of Alzheimer disease patients. Acta Neuropathol 133–144. https://doi.org/10.1007/s00401-012-1041-1
Kojro E, Gimpl G, Lammich S, Marz W, Fahrenholz F (2001) Low cholesterol stimulates the nonamyloidogenic pathway by its effect on the alpha-secretase ADAM 10. Proc Natl Acad Sci U S A 5815–5820. https://doi.org/10.1073/pnas.081612998
Seubert P, Oltersdorf T, Lee MG, Barbour R, Blomquist C, Davis DL et al (1993) Secretion of beta-amyloid precursor protein cleaved at the amino terminus of the beta-amyloid peptide. Nature 260–263. https://doi.org/10.1038/361260a0
Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 569–572. https://doi.org/10.1038/42408
Bhattacharyya R, Barren C, Kovacs DM (2013) Palmitoylation of amyloid precursor protein regulates amyloidogenic processing in lipid rafts. J Neurosci 11169–11183. https://doi.org/10.1523/jneurosci.4704-12.2013
Hur JY, Welander H, Behbahani H, Aoki M, Frånberg J, Winblad B et al (2008) Active gamma-secretase is localized to detergent-resistant membranes in human brain. Febs J 1174–1187. https://doi.org/10.1111/j.1742-4658.2008.06278.x
Cho YY, Kwon OH, Park MK, Kim TW, Chung S (2019) Elevated cellular cholesterol in Familial Alzheimer’s presenilin 1 mutation is associated with lipid raft localization of β-amyloid precursor protein. PLoS One e0210535. https://doi.org/10.1371/journal.pone.0210535
Barrett PJ, Song Y, Van Horn WD, Hustedt EJ, Schafer JM, Hadziselimovic A et al (2012) The amyloid precursor protein has a flexible transmembrane domain and binds cholesterol. Science 1168–1171. https://doi.org/10.1126/science.1219988
Cordy JM, Hussain I, Dingwall C, Hooper NM, Turner AJ (2003) Exclusively targeting beta-secretase to lipid rafts by GPI-anchor addition up-regulates beta-site processing of the amyloid precursor protein. Proc Natl Acad Sci U S A 11735–11740. https://doi.org/10.1073/pnas.1635130100
Simons M, Keller P, De Strooper B, Beyreuther K, Dotti CG, Simons K (1998) Cholesterol depletion inhibits the generation of beta-amyloid in hippocampal neurons. Proc Natl Acad Sci U S A 6460–6464. https://doi.org/10.1073/pnas.95.11.6460
Wang H, Kulas JA, Wang C, Holtzman DM, Ferris HA, Hansen SB (2021) Regulation of beta-amyloid production in neurons by astrocyte-derived cholesterol. Proc Natl Acad Sci U S A https://doi.org/10.1073/pnas.2102191118
Bhattacharyya R, Kovacs DM (2010) ACAT inhibition and amyloid beta reduction. Biochim Biophys Acta 960–965. https://doi.org/10.1016/j.bbalip.2010.04.003
Azizidoost S, Babaahmadi-Rezaei H, Nazeri Z, Cheraghzadeh M, Kheirollah A (2022) Amyloid beta increases ABCA1 and HMGCR protein expression, and cholesterol synthesis and accumulation in mice neurons and astrocytes. Biochim Biophys Acta Mol Cell Biol Lipids 159069. https://doi.org/10.1016/j.bbalip.2021.159069
Mohamed A, Viveiros A, Williams K, Posse de Chaves E (2018) Aβ inhibits SREBP-2 activation through Akt inhibition. J Lipid Res 1–13. https://doi.org/10.1194/jlr.M076703
Distl R, Meske V, Ohm T G (2001) Tangle-bearing neurons contain more free cholesterol than adjacent tangle-free neurons. Acta Neuropathol 547–554. https://doi.org/10.1007/s004010000314
Zhou X, Xu J (2012) Free cholesterol induces higher β-sheet content in Aβ peptide oligomers by aromatic interaction with Phe19. PLoS One e46245. https://doi.org/10.1371/journal.pone.0046245
Takano K, Endo S, Mukaiyama A, Chon H, Matsumura H, Koga Y et al (2006) Structure of amyloid beta fragments in aqueous environments. Febs J 150–158. https://doi.org/10.1111/j.1742-4658.2005.05051.x
Banerjee S, Hashemi M, Zagorski K, Lyubchenko YL (2021) Cholesterol in membranes facilitates aggregation of amyloid β protein at physiologically relevant concentrations. ACS Chem Neurosci 506–516. https://doi.org/10.1021/acschemneuro.0c00688
Stewart KL, Radford SE (2017) Amyloid plaques beyond Aβ: a survey of the diverse modulators of amyloid aggregation. Biophys Rev 405–419. https://doi.org/10.1007/s12551-017-0271-9
van der Kant R, Langness VF, Herrera CM, Williams DA, Fong LK, Leestemaker Y et al (2019) Cholesterol metabolism is a druggable axis that independently regulates tau and amyloid-β in iPSC-derived Alzheimer’s disease neurons. Cell Stem Cell 363-375.e369. https://doi.org/10.1016/j.stem.2018.12.013
Eftekharzadeh B, Daigle JG, Kapinos LE, Coyne A, Schiantarelli J, Carlomagno Y et al (2018) Tau protein disrupts nucleocytoplasmic transport in Alzheime’s disease. Neuron 925–940.e927. https://doi.org/10.1016/j.neuron.2018.07.039
Shibuya Y, Niu Z, Bryleva EY, Harris BT, Murphy SR, Kheirollah A et al (2015) Acyl-coenzyme A:cholesterol acyltransferase 1 blockage enhances autophagy in the neurons of triple transgenic Alzheimer’s disease mouse and reduces human P301L-tau content at the presymptomatic stage. Neurobiol Aging 2248–2259. https://doi.org/10.1016/j.neurobiolaging.2015.04.002
Marchi N, Banjara M, Janigro D (2016) Blood-brain barrier, bulk flow, and interstitial clearance in epilepsy. J Neurosci Methods 118–124. https://doi.org/10.1016/j.jneumeth.2015.06.011
Bell RD, Zlokovic BV (2009) Neurovascular mechanisms and blood-brain barrier disorder in Alzheimer’s disease. Acta Neuropathol 103–113. https://doi.org/10.1007/s00401-009-0522-3
Gali CC, Fanaee-Danesh E, Zandl-Lang M, Albrecher NM, Tam-Amersdorfer C, Stracke A et al (2019) Amyloid-beta impairs insulin signaling by accelerating autophagy-lysosomal degradation of LRP-1 and IR-β in blood-brain barrier endothelial cells in vitro and in 3XTg-AD mice. Mol Cell Neurosci 103390. https://doi.org/10.1016/j.mcn.2019.103390
Jaeger LB, Dohgu S, Hwang MC, Farr SA, Murphy MP, Fleegal-Demotta MA et al (2009) Testing the neurovascular hypothesis of Alzheimer’s disease: LRP-1 antisense reduces blood-brain barrier clearance, increases brain levels of amyloid-beta protein, and impairs cognition. J Alzheimers Dis 553–570. https://doi.org/10.3233/jad-2009-1074
Tamamizu-Kato S, Cohen JK, Drake CB, Kosaraju MG, Drury J, Narayanaswami V (2008) Interaction with amyloid beta peptide compromises the lipid binding function of apolipoprotein E. Biochemistry 5225–5234. https://doi.org/10.1021/bi702097s
Wisniewski T, Frangione B (1992) Apolipoprotein E: a pathological chaperone protein in patients with cerebral and systemic amyloid. Neurosci Lett 235–238. https://doi.org/10.1016/0304-3940(92)90444-c
Belloy ME, Napolioni V, Greicius MD (2019) A quarter century of APOE and Alzheimer’s disease: progress to date and the path forward. Neuron 820–838. https://doi.org/10.1016/j.neuron.2019.01.056
Serrano-Pozo A, Das S, Hyman BT (2021) APOE and Alzheimer’s disease: advances in genetics, pathophysiology, and therapeutic approaches. Lancet Neurol 68–80. https://doi.org/10.1016/s1474-4422(20)30412-9
Castellano JM, Kim J, Stewart FR, Jiang H, Demattos RB, Patterson BW et al (2011) Human apoE isoforms differentially regulate brain amyloid-β peptide clearance. Sci Transl Med 89ra57. https://doi.org/10.1126/scitranslmed.3002156
Wang C, Xiong M, Gratuze M, Bao X, Shi Y, Andhey PS et al (2021) Selective removal of astrocytic APOE4 strongly protects against tau-mediated neurodegeneration and decreases synaptic phagocytosis by microglia. Neuron 1657–1674.e1657. https://doi.org/10.1016/j.neuron.2021.03.024
Sobo K, Le Blanc I, Luyet PP, Fivaz M, Ferguson C, Parton RG et al (2007) Late endosomal cholesterol accumulation leads to impaired intra-endosomal trafficking. PLoS One e851. https://doi.org/10.1371/journal.pone.0000851
Barbero-Camps E, Roca-Agujetas V, Bartolessis I, de Dios C, Fernández-Checa JC, Marí M et al (2018) Cholesterol impairs autophagy-mediated clearance of amyloid beta while promoting its secretion. Autophagy 1129–1154. https://doi.org/10.1080/15548627.2018.1438807
Lee CY, Tse W, Smith JD, Landreth GE (2012) Apolipoprotein E promotes β-amyloid trafficking and degradation by modulating microglial cholesterol levels. J Biol Chem 2032–2044. https://doi.org/10.1074/jbc.M111.295451
Eckman EA, Eckman CB (2005) Abeta-degrading enzymes: modulators of Alzheimer’s disease pathogenesis and targets for therapeutic intervention. Biochem Soc Trans 1101–1105. https://doi.org/10.1042/bst20051101
Miners JS, Baig S, Palmer J, Palmer LE, Kehoe PG, Love S (2008) Abeta-degrading enzymes in Alzheimer’s disease. Brain Pathol 240–252. https://doi.org/10.1111/j.1750-3639.2008.00132.x
Maulik M, Westaway D, Jhamandas JH, Kar S (2013) Role of cholesterol in APP metabolism and its significance in Alzheimer’s disease pathogenesis. Mol Neurobiol 37–63. https://doi.org/10.1007/s12035-012-8337-y
Ledesma MD, Abad-Rodriguez J, Galvan C, Biondi E, Navarro P, Delacourte A et al (2003) Raft disorganization leads to reduced plasmin activity in Alzheimer’s disease brains. EMBO Rep 1190–1196. https://doi.org/10.1038/sj.embor.7400021
Basak JM, Verghese PB, Yoon H, Kim J, Holtzman DM (2012) Low-density lipoprotein receptor represents an apolipoprotein E-independent pathway of Aβ uptake and degradation by astrocytes. J Biol Chem 13959–13971. https://doi.org/10.1074/jbc.M111.288746
Verghese PB, Castellano JM, Garai K, Wang Y, Jiang H, Shah A et al (2013) ApoE influences amyloid-β (Aβ) clearance despite minimal apoE/Aβ association in physiological conditions. Proc Natl Acad Sci U S A E1807–1816. https://doi.org/10.1073/pnas.1220484110
Prasad H, Rao R (2018) Amyloid clearance defect in ApoE4 astrocytes is reversed by epigenetic correction of endosomal pH. Proc Natl Acad Sci U S A E6640-E6649. https://doi.org/10.1073/pnas.1801612115
Hara M, Matsushima T, Satoh H, Iso-o N, Noto H, Togo M et al (2003) Isoform-dependent cholesterol efflux from macrophages by apolipoprotein E is modulated by cell surface proteoglycans. Arterioscler Thromb Vasc Biol 269–274.
留言 (0)