Inhibition of Vascular Endothelial Growth Factor Reduces Photoreceptor Death in Retinal Neovascular Disease via Neurotrophic Modulation in Müller Glia

Das A (2016) Diabetic Retinopathy: Battling the Global Epidemic. Invest Ophthalmol Vis Sci 57:6669–6682. https://doi.org/10.1167/iovs.16-21031

Article  CAS  PubMed  PubMed Central  Google Scholar 

Behl T, Kotwani A (2015) Exploring the Various Aspects of the Pathological Role of Vascular Endothelial Growth Factor (VEGF) in Diabetic Retinopathy. Pharmacol Res 99:137–148. https://doi.org/10.1016/j.phrs.2015.05.013

Article  CAS  PubMed  Google Scholar 

Calvo PM, Hernández RG, Pastor AM, de la Cruz RR (2022) VEGF and Neuronal Survival. Neuroscientist 10738584221120803. https://doi.org/10.1177/10738584221120803

Martinez-Zapata MJ, Martí-Carvajal AJ, Solà I et al (2014) Anti-Vascular Endothelial Growth Factor for Proliferative Diabetic Retinopathy. Cochrane Database Syst Rev 2014:CD008721. https://doi.org/10.1002/14651858.CD008721

Article  PubMed  PubMed Central  Google Scholar 

Arjmand P, Yu CW, Popovic MM, Jhaveri A, Mandelcorn ED (2022) Prophylactic intraocular pressure lowering measures in anti-vascular endothelial growth factor therapy: A systematic review and meta-analysis. Surv Ophthalmol S0039–6257(22):00176–X. https://doi.org/10.1016/j.survophthal.2022.12.002

Article  Google Scholar 

Tan Y, Fukutomi A, Sun MT, Durkin S, Gilhotra J, Chan WO (2021) Anti-VEGF Crunch Syndrome in Proliferative Diabetic Retinopathy: A review. Surv Ophthalmol 66:926–932. https://doi.org/10.1016/j.survophthal.2021.03.001

Article  PubMed  Google Scholar 

Falavarjani KG, Nguyen QD (2013) Adverse Events and Complications Associated with Intravitreal Injection of Anti-VEGF Agents: a Review of Literature. Eye (Lond) 27:787–794. https://doi.org/10.1038/eye.2013.107

Article  CAS  PubMed  Google Scholar 

Park HY, Kim JH, Park CK (2014) Neuronal Cell Death in the Inner Retina and the Influence of Vascular Endothelial Growth Factor Inhibition in a Diabetic Rat Model. Am J Pathol 184:1752–1762. https://doi.org/10.1016/j.ajpath.2014.02.016

Article  CAS  PubMed  Google Scholar 

Segatto M, Fico E, Gharbiya M et al (2019) VEGF Inhibition Alters Neurotrophin Signalling Pathways and Induces Caspase-3 Activation and Autophagy in Rabbit Retina. J Cell Physiol 234:18297–18307. https://doi.org/10.1002/jcp.28462

Article  CAS  PubMed  Google Scholar 

Palmhof M, Lohmann S, Schulte D et al (2018) Fewer Functional Deficits and Reduced Cell Death after Ranibizumab Treatment in a Retinal Ischemia Model. Int J Mol Sci 19:1636. https://doi.org/10.3390/ijms19061636

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pardue MT, Allen RS (2018) Neuroprotective Strategies for Retinal Disease. Prog Retin Eye Res 65:50–76. https://doi.org/10.1016/j.preteyeres.2018.02.002

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boss JD, Singh PK, Pandya HK et al (2017) Assessment of Neurotrophins and Inflammatory Mediators in Vitreous of Patients with Diabetic Retinopathy. Invest Ophthalmol Vis Sci 58:5594–5603. https://doi.org/10.1167/iovs.17-21973

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abu El-Asrar AM, Mohammad G, De Hertogh G et al (2013) Neurotrophins and Neurotrophin Receptors in Proliferative Diabetic Retinopathy. PLoS One 8:e65472. https://doi.org/10.1371/journal.pone.0065472

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vecino E, Rodriguez FD, Ruzafa N, Pereiro X, Sharma SC (2016) Glia-Neuron Interactions in the Mammalian Retina. Prog Retin Eye Res 51:1–40. https://doi.org/10.1016/j.preteyeres.2015.06.003

Article  CAS  PubMed  Google Scholar 

Bringmann A, Iandiev I, Pannicke T et al (2009) Cellular Signaling and Factors Involved in Müller Cell Gliosis: Neuroprotective and Detrimental Effects. Prog Retin Eye Res 28:423–451. https://doi.org/10.1016/j.preteyeres.2009.07.001

Article  CAS  PubMed  Google Scholar 

Wang J, Xu X, Elliott MH, Zhu M, Le YZ (2010) Müller Cell-derived VEGF is Essential for Diabetes-Induced Retinal Inflammation and Vascular Leakage. Diabetes 59:2297–2305. https://doi.org/10.2337/db09-1420

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gaddini L, Varano M, Matteucci A et al (2016) Müller Glia Activation by VEGF-Antagonizing Drugs: An in Vitro Study on Rat Primary Retinal Cultures. Exp Eye Res 145:158–163. https://doi.org/10.1016/j.exer.2015.11.010

Article  CAS  PubMed  Google Scholar 

Saint-Geniez M, Maharaj AS, Walshe TE et al (2008) Endogenous VEGF is Required for Visual Function: Evidence for a Survival Role on Müller Cells and Photoreceptors. PLoS One 3:e3554. https://doi.org/10.1371/journal.pone.0003554

Article  CAS  PubMed  PubMed Central  Google Scholar 

Smith LE, Wesolowski E, McLellan A et al (1994) Oxygen-Induced Retinopathy in the Mouse. Invest Ophthalmol Vis Sci 35:101–111

CAS  PubMed  Google Scholar 

Gao S, Li N, Wang Y et al (2022) Inhibition of Vascular Endothelial Growth Factor Alleviates Neovascular Retinopathy with Regulated Neurotrophic/Proinflammatory Cytokines Through the Modulation of DBI-TSPO Signaling. FASEB J 36:e22367. https://doi.org/10.1096/fj.202101294RRR

Article  CAS  PubMed  Google Scholar 

Hicks D, Courtois Y (1990) The Growth and Behaviour of Rat Retinal Müller Cells in Vitro. 1. An Improved Method for Isolation and Culture. Exp Eye Res 51:119–129. https://doi.org/10.1016/0014-4835(90)90063-z

Article  CAS  PubMed  Google Scholar 

Li N, Gao S, Wang J, Zhu Y, Shen X (2019) Anti-Apoptotic Effect of Interleukin-17 in a Mouse Model of Oxygen-Induced Retinopathy. Exp Eye Res 187:107743. https://doi.org/10.1016/j.exer.2019.107743

Article  CAS  PubMed  Google Scholar 

Ruiz de Almodovar C, Lambrechts D, Mazzone M, Carmeliet P (2009) Role and Therapeutic Potential of VEGF in the Nervous System. Physiol Rev 89:607–648. https://doi.org/10.1152/physrev.00031.2008

Article  CAS  PubMed  Google Scholar 

Shim JW, Madsen JR (2018) VEGF Signaling in Neurological Disorders. Int J Mol Sci 19:275. https://doi.org/10.3390/ijms19010275

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang N, Chen J, Ferraro GB et al (2018) Anti-VEGF Treatment Improves Neurological Function in Tumors of the Nervous System. Exp Neurol 299:326–333. https://doi.org/10.1016/j.expneurol.2017.09.008

Article  CAS  PubMed  Google Scholar 

Oosthuyse B, Moons L, Storkebaum E et al (2001) Deletion of the Hypoxia-Response Element in the Vascular Endothelial Growth Factor Promoter Causes Motor Neuron Degeneration. Nat Genet 28:131–138. https://doi.org/10.1038/88842

Article  CAS  PubMed  Google Scholar 

Carmeliet P, Ruiz de Almodovar C (2013) VEGF Ligands and Receptors: Implications in Neurodevelopment and Neurodegeneration. Cell Mol Life Sci 70:1763–1778. https://doi.org/10.1007/s00018-013-1283-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tillo M, Ruhrberg C, Mackenzie F (2012) Emerging Roles for Semaphorins and VEGFs in Synaptogenesis and Synaptic Plasticity. Cell Adh Migr 6:541–546. https://doi.org/10.4161/cam.22408

Article  PubMed  PubMed Central  Google Scholar 

Aiello LP, Northrup JM, Keyt BA et al (1995) Hypoxic Regulation of Vascular Endothelial Growth Factor in Retinal Cells. Arch Ophthalmol 113:1538–1544.

留言 (0)

沒有登入
gif