Medeiros D et al (2024) Slowing Alzheimer’s disease progression through probiotic supplementation. Front Neurosci 18:1309075. https://doi.org/10.3389/fnins.2024.1309075
Article PubMed PubMed Central Google Scholar
Sharma H et al (2023) Multi-targeting neuroprotective effects of Syzygium aromaticum bud extracts and their key phytocompounds against neurodegenerative diseases. Int J Mol Sci 24(9):8148
Article PubMed PubMed Central CAS Google Scholar
Barichello T, Giridharan VV, Dal-Pizzol F (2019) A cerebrospinal fluid biosignature for the diagnosis of Alzheimer’s disease. Braz J Psychiatry 41(6):467–468. https://doi.org/10.1590/1516-4446-2019-0629
Article PubMed PubMed Central Google Scholar
Yu TW, Lane HY, Lin CH (2021) Novel therapeutic approaches for Alzheimer’s disease: an updated review. Int J Mol Sci 22(15):8208
Article PubMed PubMed Central CAS Google Scholar
Varesi A et al (2022) The potential role of gut microbiota in Alzheimer’s disease: from diagnosis to treatment. Nutrients 14(3):668
Article PubMed PubMed Central CAS Google Scholar
Heydari R et al (2024) A domestic strain of Lactobacillus rhamnosus attenuates cognitive deficit and pro-inflammatory cytokine expression in an animal model of Alzheimer’s disease. Behav Brain Res 476:115277. https://doi.org/10.1016/j.bbr.2024.115277
Article PubMed CAS Google Scholar
Yan YJ, Huang CQ (2024) Cognitive impairment induced by circadian rhythm disorders involves hippocampal brain-derived neurotrophic factor reduction and amyloid-β deposition. Chronobiol Int 41(10):1299–1306. https://doi.org/10.1080/07420528.2024.2406545
Article PubMed CAS Google Scholar
Leviatan S et al (2022) An expanded reference map of the human gut microbiome reveals hundreds of previously unknown species. Nat Commun 13(1):3863. https://doi.org/10.1038/s41467-022-31502-1
Article PubMed PubMed Central CAS Google Scholar
Gill SR et al (2006) Metagenomic analysis of the human distal gut microbiome. Science 312(5778):1355–1359
Article PubMed PubMed Central CAS Google Scholar
Bercik P et al (2012) Microbes and the gut-brain axis. Neurogastroenterol Motil 24(5):405–413
Article PubMed CAS Google Scholar
Mancuso C, Santangelo R (2018) Alzheimer’s disease and gut microbiota modifications: the long way between preclinical studies and clinical evidence. Pharmacol Res 129:329–336
Article PubMed CAS Google Scholar
Arpaia N et al (2013) Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504(7480):451–455
Article PubMed PubMed Central CAS Google Scholar
Cani PD, Everard A, Duparc T (2013) Gut microbiota, enteroendocrine functions and metabolism. Curr Opin Pharmacol 13(6):935–940
Article PubMed CAS Google Scholar
Doifode T et al (2021) The impact of the microbiota-gut-brain axis on Alzheimer’s disease pathophysiology. Pharmacol Res 164:105314
Article PubMed CAS Google Scholar
Huang Y et al (2023) The gut microbiome modulates the transformation of microglial subtypes. Mol Psychiatr 28(4):1611–1621
Zinöcker MK, Lindseth IA (2018) The Western diet-microbiome-host interaction and its role in metabolic disease. Nutrients 10(3):365. https://doi.org/10.3390/nu10030365
Article PubMed PubMed Central CAS Google Scholar
Buford TW (2017) (Dis)Trust your gut: the gut microbiome in age-related inflammation, health, and disease. Microbiome 5(1):80. https://doi.org/10.1186/s40168-017-0296-0
Article PubMed PubMed Central Google Scholar
Kesika P et al (2021) Role of gut-brain axis, gut microbial composition, and probiotic intervention in Alzheimer’s disease. Life Sci 264:118627
Article PubMed CAS Google Scholar
Marizzoni M et al (2020) Short-chain fatty acids and lipopolysaccharide as mediators between gut dysbiosis and amyloid pathology in Alzheimer’s disease. J Alzheimers Dis 78(2):683–697
Article PubMed CAS Google Scholar
Kim N et al (2021) Transplantation of gut microbiota derived from Alzheimer’s disease mouse model impairs memory function and neurogenesis in C57BL/6 mice. Brain Behav Immun 98:357–365. https://doi.org/10.1016/j.bbi.2021.09.002
Article PubMed CAS Google Scholar
Jin J et al (2023) Gut-derived β-amyloid: likely a centerpiece of the gut–brain axis contributing to Alzheimer’s pathogenesis. Gut Microbes 15(1):2167172
Article PubMed PubMed Central Google Scholar
Kahn MS et al (2012) Prolonged elevation in hippocampal Aβ and cognitive deficits following repeated endotoxin exposure in the mouse. Behav Brain Res 229(1):176–184
Article PubMed CAS Google Scholar
Qian X-H et al (2022) Injection of amyloid-β to lateral ventricle induces gut microbiota dysbiosis in association with inhibition of cholinergic anti-inflammatory pathways in Alzheimer’s disease. J Neuroinflammation 19(1):1–15
Grabrucker S et al (2023) Microbiota from Alzheimer’s patients induce deficits in cognition and hippocampal neurogenesis. Brain 146(12):4916–4934
Article PubMed PubMed Central Google Scholar
Willette AA et al (2021) Inflammation, negative affect, and amyloid burden in Alzheimer’s disease: insights from the kynurenine pathway. Brain Behav Immun 95:216–225. https://doi.org/10.1016/j.bbi.2021.03.019
Article PubMed PubMed Central CAS Google Scholar
Guillemin GJ et al (2005) Indoleamine 2, 3 dioxygenase and quinolinic acid immunoreactivity in Alzheimer’s disease hippocampus. Neuropathol Appl Neurobiol 31(4):395–404
Article PubMed CAS Google Scholar
Ge P et al (2023) TMAO promotes NLRP3 inflammasome activation of microglia aggravating neurological injury in ischemic stroke through FTO/IGF2BP2. J Inflamm Res 16:3699–3714. https://doi.org/10.2147/jir.S399480
Article PubMed PubMed Central CAS Google Scholar
Brunt VE et al (2020) Trimethylamine-N-oxide promotes age-related vascular oxidative stress and endothelial dysfunction in mice and healthy humans. Hypertension 76(1):101–112. https://doi.org/10.1161/HYPERTENSIONAHA.120.14759
Article PubMed CAS Google Scholar
Arrona Cardoza P, Spillane MB, Morales Marroquin EJNR (2022) Alzheimer’s disease and gut microbiota: does trimethylamine N-oxide (TMAO) play a role? Nutr Rev 80(2):271–281
Miyamoto K et al (2023) The gut microbiota-induced kynurenic acid recruits GPR35-positive macrophages to promote experimental encephalitis. Cell Rep 42(8):113005. https://doi.org/10.1016/j.celrep.2023.113005
留言 (0)