Bononi A, Agnoletto C, De Marchi E, Marchi S, Patergnani S, Bonora M, Giorgi C, Missiroli S, Poletti F, Rimessi A, Pinton P (2011) Protein kinases and phosphatases in the control of cell fate. Enzyme Res 2011:329098. https://doi.org/10.4061/2011/329098
Article PubMed PubMed Central Google Scholar
Wurzenberger C, Gerlich DW (2011) Phosphatases: providing safe passage through mitotic exit. Nat Rev Mol Cell Biol 12(8):469–482. https://doi.org/10.1038/nrm3149
Lin SS, Bassik MC, Suh H, Nishino M, Arroyo JD, Hahn WC, Korsmeyer SJ, Roberts TM (2006) PP2A regulates BCL-2 phosphorylation and proteasome-mediated degradation at the endoplasmic reticulum. J Biol Chem 281(32):23003–23012. https://doi.org/10.1074/jbc.M602648200
Low IC, Loh T, Huang Y, Virshup DM, Pervaiz S (2014) Ser70 phosphorylation of Bcl-2 by selective tyrosine nitration of PP2A-B56delta stabilizes its antiapoptotic activity. Blood 124(14):2223–2234. https://doi.org/10.1182/blood-2014-03-563296
Ozel B, Kipcak S, Biray Avci C, Gunduz C, Saydam G, Aktan C, Selvi Gunel N (2022) Combination of dasatinib and okadaic acid induces apoptosis and cell cycle arrest by targeting protein phosphatase PP2A in chronic myeloid leukemia cells. Med Oncol 39(4):46. https://doi.org/10.1007/s12032-021-01643-2
Krasinska L, Domingo-Sananes MR, Kapuy O, Parisis N, Harker B, Moorhead G, Rossignol M, Novak B, Fisher D (2011) Protein phosphatase 2A controls the order and dynamics of cell-cycle transitions. Mol Cell 44(3):437–450. https://doi.org/10.1016/j.molcel.2011.10.007
Grallert A, Boke E, Hagting A, Hodgson B, Connolly Y, Griffiths JR, Smith DL, Pines J, Hagan IM (2015) A PP1-PP2A phosphatase relay controls mitotic progression. Nature 517(7532):94–98. https://doi.org/10.1038/nature14019
Wlodarchak N, Xing Y (2016) PP2A as a master regulator of the cell cycle. Crit Rev Biochem Mol Biol 51(3):162–184. https://doi.org/10.3109/10409238.2016.1143913
Article PubMed PubMed Central Google Scholar
Bauman AL, Scott JD (2002) Kinase- and phosphatase-anchoring proteins: harnessing the dynamic duo. Nat Cell Biol 4(8):E203-206. https://doi.org/10.1038/ncb0802-e203
Kins S, Crameri A, Evans DR, Hemmings BA, Nitsch RM, Gotz J (2001) Reduced protein phosphatase 2A activity induces hyperphosphorylation and altered compartmentalization of tau in transgenic mice. J Biol Chem 276(41):38193–38200. https://doi.org/10.1074/jbc.M102621200
Liu C, Gotz J (2013) How it all started: tau and protein phosphatase 2A. J Alzheimers Dis 37(3):483–494. https://doi.org/10.3233/JAD-130503
Jun GR, You Y, Zhu C, Meng G, Chung J, Panitch R, Hu J, Xia W, Alzheimer’s Disease Genetics C, Bennett DA, Foroud TM, Wang LS, Haines JL, Mayeux R, Pericak-Vance MA, Schellenberg GD, Au R, Lunetta KL, Ikezu T, Stein TD, Farrer LA (2022) Protein phosphatase 2A and complement component 4 are linked to the protective effect of APOE varepsilon2 for Alzheimer’s disease. Alzheimers Dement. https://doi.org/10.1002/alz.12607
Takaichi Y, Chambers JK, Ano Y, Takashima A, Nakayama H, Uchida K (2021) Deposition of Phosphorylated alpha-Synuclein and Activation of GSK-3beta and PP2A in the PS19 Mouse Model of Tauopathy. J Neuropathol Exp Neurol 80(8):731–740. https://doi.org/10.1093/jnen/nlab054
Liu X, Huai J, Endle H, Schluter L, Fan W, Li Y, Richers S, Yurugi H, Rajalingam K, Ji H, Cheng H, Rister B, Horta G, Baumgart J, Berger H, Laube G, Schmitt U, Schmeisser MJ, Boeckers TM, Tenzer S, Vlachos A, Deller T, Nitsch R, Vogt J (2016) PRG-1 Regulates Synaptic Plasticity via Intracellular PP2A/beta1-Integrin Signaling. Dev Cell 38(3):275–290. https://doi.org/10.1016/j.devcel.2016.06.019
Wang J, Xie R, Kou X, Liu Y, Qi C, Liu R, You W, Gao J, Gao X (2019) A protein phosphatase 2A deficit in the hippocampal CA1 area impairs memory extinction. Mol Brain 12(1):51. https://doi.org/10.1186/s13041-019-0469-9
Article PubMed PubMed Central Google Scholar
Corcoran NM, Martin D, Hutter-Paier B, Windisch M, Nguyen T, Nheu L, Sundstrom LE, Costello AJ, Hovens CM (2010) Sodium selenate specifically activates PP2A phosphatase, dephosphorylates tau and reverses memory deficits in an Alzheimer’s disease model. J Clin Neurosci 17(8):1025–1033. https://doi.org/10.1016/j.jocn.2010.04.020
Chu J, Wang J, Cui L, Liu S, An N, Han J, Che X, Wu C, Yang J (2021) Pseudoginsenoside-F11 ameliorates okadiac acid-induced learning and memory impairment in rats via modulating protein phosphatase 2A. Mech Ageing Dev 197:111496. https://doi.org/10.1016/j.mad.2021.111496
McKinnon PJ (2009) DNA repair deficiency and neurological disease. Nat Rev Neurosci 10(2):100–112. https://doi.org/10.1038/nrn2559
Article PubMed PubMed Central Google Scholar
Heideker J, Lis ET, Romesberg FE (2007) Phosphatases, DNA damage checkpoints and checkpoint deactivation. Cell Cycle 6(24):3058–3064
Guo CY, Brautigan DL, Larner JM (2002) ATM-dependent dissociation of B55 regulatory subunit from nuclear PP2A in response to ionizing radiation. J Biol Chem 277(7):4839–4844. https://doi.org/10.1074/jbc.M110092200
Chowdhury D, Xu X, Zhong X, Ahmed F, Zhong J, Liao J, Dykxhoorn DM, Weinstock DM, Pfeifer GP, Lieberman J (2008) A PP4-phosphatase complex dephosphorylates gamma-H2AX generated during DNA replication. Mol Cell 31(1):33–46. https://doi.org/10.1016/j.molcel.2008.05.016
Article PubMed PubMed Central Google Scholar
Douglas P, Zhong J, Ye R, Moorhead GB, Xu X, Lees-Miller SP (2010) Protein phosphatase 6 interacts with the DNA-dependent protein kinase catalytic subunit and dephosphorylates gamma-H2AX. Mol Cell Biol 30(6):1368–1381. https://doi.org/10.1128/MCB.00741-09
Article PubMed PubMed Central Google Scholar
Yan Y, Cao PT, Greer PM, Nagengast ES, Kolb RH, Mumby MC, Cowan KH (2010) Protein phosphatase 2A has an essential role in the activation of gamma-irradiation-induced G2/M checkpoint response. Oncogene 29(30):4317–4329. https://doi.org/10.1038/onc.2010.187
Article PubMed PubMed Central Google Scholar
Goder A, Emmerich C, Nikolova T, Kiweler N, Schreiber M, Kuhl T, Imhof D, Christmann M, Heinzel T, Schneider G, Kramer OH (2018) HDAC1 and HDAC2 integrate checkpoint kinase phosphorylation and cell fate through the phosphatase-2A subunit PR130. Nat Commun 9(1):764. https://doi.org/10.1038/s41467-018-03096-0
Article PubMed PubMed Central Google Scholar
Li J, Chen J, Ricupero CL, Hart RP, Schwartz MS, Kusnecov A, Herrup K (2012) Nuclear accumulation of HDAC4 in ATM deficiency promotes neurodegeneration in ataxia telangiectasia. Nat Med 18(5):783–790. https://doi.org/10.1038/nm.2709
Article PubMed PubMed Central Google Scholar
Gu P, Qi X, Zhou Y, Wang Y, Gao X (2012) Generation of Ppp2Ca and Ppp2Cb conditional null alleles in mouse. Genesis 50(5):429–436. https://doi.org/10.1002/dvg.20815
Gruber R, Zhou Z, Sukchev M, Joerss T, Frappart PO, Wang ZQ (2011) MCPH1 regulates the neuroprogenitor division mode by coupling the centrosomal cycle with mitotic entry through the Chk1-Cdc25 pathway. Nat Cell Biol 13(11):1325–1334. https://doi.org/10.1038/ncb2342
Frappart PO, Tong WM, Demuth I, Radovanovic I, Herceg Z, Aguzzi A, Digweed M, Wang ZQ (2005) An essential function for NBS1 in the prevention of ataxia and cerebellar defects. Nat Med 11(5):538–544. https://doi.org/10.1038/nm1228
Lin L, Zhang M, Stoilov P, Chen L, Zheng S (2020) Developmental Attenuation of Neuronal Apoptosis by Neural-Specific Splicing of Bak1 Microexon. Neuron 107(6):1180–1196. https://doi.org/10.1016/j.neuron.2020.06.036
Article PubMed PubMed Central Google Scholar
Vorhees CV, Williams MT (2006) M
留言 (0)