The in vitro toxicity evaluation of halloysite nanotubes (HNTs) in human lung cells

1.

Koivisto AJ, Bluhme AB, Kling KI et al (2018) Occupational exposure during handling and loading of halloysite nanotubes—a case study of counting nanofibers. NanoImpact 10:153–160. https://doi.org/10.1016/j.impact.2018.04.003

Article  Google Scholar 

2.

Satish S, Tharmavaram M, Rawtani D (2019) Halloysite nanotubes as a nature’s boon for biomedical applications. Nanobiomedicine 6:1–16. https://doi.org/10.1177/1849543519863625

Article  Google Scholar 

3.

Chiriaco F, Conversano F, Sbenaglia EA, Casciaro S, Leporatti S, Lay-Ekuakille A (2014) Cytotoxicity measurements of Halloysite Nanotubes for nanomedicine applications. In: IEEE international symposium on medical measurements and applications (MeMeA), pp 1–4. https://doi.org/10.1109/MeMeA.2014.6860126

4.

Kelly H, Deasy P, Ziaka E, Claffey N (2004) Formulation and preliminary in vivo dog studies of a novel drug delivery system for the treatment of periodontitis. Int J Pharm 274:167–183. https://doi.org/10.1016/j.ijpharm.2004.01.019

CAS  Article  PubMed  Google Scholar 

5.

Kommireddy D, Ichinose I, Lvov YM, Mills D (2005) Nanoparticle multilayer: surface modification for cell attachment and growth. J Biomed Nanotechnol 1:286–290. https://doi.org/10.1166/jbn.2005.046

CAS  Article  Google Scholar 

6.

Shi YF, Tian Z, Zhang Y, Shen HB, Jia NQ (2011) Functionalized halloysite nanotube-based carrier for intracellular delivery of antisense oligonucleotides. Nanoscale Res Lett 6:608–614. https://doi.org/10.1186/1556-276X-6-608

Article  PubMed  PubMed Central  Google Scholar 

7.

Vergaro V, Lvov YM, Leporatti S (2012) Halloysite clay nanotubes for resveratrol delivery to cancer cells. Macromol Biosci 12:1265–1271. https://doi.org/10.1002/mabi.201200121

CAS  Article  PubMed  Google Scholar 

8.

Hughes AD, Mattinson J, Powderly JD, Greene BT, King MR (2012) Rapid isolation of viable circulating tumor cells from patient blood samples. J Vis Exp 64:4248. https://doi.org/10.3791/4248

Article  Google Scholar 

9.

Kamble R, Ghag M, Gaikawad S, Panda BK (2012) Halloysite nanotubes and applications: a review. J Adv Sci Res 3:25–29

Google Scholar 

10.

Rawtani D, Agrawal YK (2012) Multifarious applications of halloysite nanotubes: a review. Rev Adv Mater Sci 30:282–295

CAS  Google Scholar 

11.

Yuan P, Tan D, Annabi-Bergaya F (2015) Properties and applications of halloysite nanotubes: recent research advances and future prospects. Appl Clay Sci 112–113:75–93. https://doi.org/10.1016/j.clay.2015.05.001

CAS  Article  Google Scholar 

12.

Zhang Y, Tang A, Yang H, Ouyang J (2016) Applications and interfaces of halloysite nanocomposites. Appl Clay Sci 119:8–17. https://doi.org/10.1016/j.clay.2015.06.034

CAS  Article  Google Scholar 

13.

Luo P, Zhao Y, Zhang B, Liu J, Yang Y, Liu J (2010) Study on the adsorption of Neutral Red from aqueous solution onto halloysite nanotubes. Water Res 44:1489–1497. https://doi.org/10.1016/j.watres.2009.10.042

CAS  Article  PubMed  Google Scholar 

14.

Saber AT, Lamson JS, Jacobsen NR, Ravn-Haren G et al (2013) Particle-induced pulmonary acute phase response correlates with neutrophil influx linking inhaled particles and cardiovascular risk. PLoS ONE e69020:20138. https://doi.org/10.1371/journal.pone.0069020

CAS  Article  Google Scholar 

15.

Poulsen SS, Saber AT, Williams A et al (2015) MWCNTs of different physicochemical properties cause similar inflammatory responses, but differences in transcriptional and histological markers of fibrosis in mouse lungs. Toxicol Appl Pharmacol 284:16–32. https://doi.org/10.1016/j.taap.2014.12.011

CAS  Article  PubMed  Google Scholar 

16.

Jaurand MC (2017) An overview on the safety of tubular clay minerals. Dev Clay Sci 7:485–508. https://doi.org/10.1016/B978-0-08-100293-3.00020-0

Article  Google Scholar 

17.

Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63. https://doi.org/10.1016/0022-1759(83)90303-4

CAS  Article  PubMed  Google Scholar 

18.

Puck TT, Markus PI (1956) Action of X-rays on mammalian cells. J Exp Med 103:653–666. https://doi.org/10.1084/jem.103.5.653

CAS  Article  PubMed  PubMed Central  Google Scholar 

19.

Herzog E, Casey A, Lyng FM, Chambers G, Byrne HJ, Davoren M (2007) A new approach to the toxicity testing of carbon-based nanomaterials-the clonogenic assay. Toxicol Lett 174:49–60. https://doi.org/10.1016/j.toxlet.2007.08.009

CAS  Article  PubMed  Google Scholar 

20.

Franken N, Rodermond HM, Stap J, Haverman J, van Bree C (2006) Clonogenic assay of cells in virto. Nat Protoc 1:2315–2319. https://doi.org/10.1038/nprot.2006.339

CAS  Article  Google Scholar 

21.

Kruszewski M, Grądzka I, Bartłomierczyk T, Chwastowska J, Sommer S et al (2013) Oxidative DNA damage corresponds to the long term survival of human cells treated with silver nanoparticles. Toxicol Lett 219:151–159. https://doi.org/10.1016/j.toxlet.2013.03.006

CAS  Article  PubMed  Google Scholar 

22.

Zhang XD, Wu D, Shen X, Chen J, Sun YM, Liu PX, Liang XJ (2012) Size-dependent radiosensitization of PEG-coated gold nanoparticles for cancer radiation therapy. Biomaterials 33:6408–6419. https://doi.org/10.1016/j.biomaterials.2012.05.047

CAS  Article  PubMed  Google Scholar 

23.

Montes-Burgos I, Walczyk D, Hole P, Smith J, Lynch I, Dawson K (2010) Characterisation of nanoparticle size and state prior to nanotoxicological studies. J Nanopart Res 12:47–53. https://doi.org/10.1007/s11051-009-9774-z

Article  Google Scholar 

24.

Gaaz TS, Sulong AB, Akhtar MN, Raza MR (2015) Morphology and tensile properties of thermoplastic polyurethane-halloysite nanotube nanocomposites. Int J Automot Mech Eng 12:2844–2856. https://doi.org/10.15282/ijame.12.2015.4.0239

CAS  Article  Google Scholar 

25.

Lanone S, Rogerieux F, Geys J, Boczkowski J, Lacroix G, Dupont A, Maillot-Marechal E, Hoet P (2009) Comparative toxicity 27 manufactured nanomaterials in human alveolar epithelial and macrophage cell lines. Part Fibre Toxicol 6:14. https://doi.org/10.1186/1743-8977-6-14

CAS  Article  PubMed  PubMed Central  Google Scholar 

26.

Cho W-S, Duffin R, Bradley M et al (2013) Predictive value of in vitro assays depends on the mechanism of toxicity of metal oxide nanoparticles. Part Fibre Toxicol 10:55. https://doi.org/10.1186/1743-8977-10-55

Article  PubMed  PubMed Central  Google Scholar 

27.

Hillegass JM, Shukla A, Lathrop SA, MacPherson MB, Fukagawa NK, Mossman BT (2010) Assessing nanotoxicity in cells in vitro. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2:219–231. https://doi.org/10.1002/wnan.54

CAS  Article  PubMed  PubMed Central  Google Scholar 

28.

Lu X, Qian J, Zhou H et al (2011) In vitro cytotoxicity and induction of apoptosis by silica nanoparticles in human HepG2 hepatoma cells. Int J Nanomed 6:1889–1901. https://doi.org/10.2147/IJN.S24005

CAS  Article  Google Scholar 

29.

Sood A, Salih S, Roh D et al (2011) Signalling of DNA damage and cytokines across cell barriers exposed to nanoparticles depends on barrier thickness. Nat Nanotechnol 6:824–833. https://doi.org/10.1038/nnano.2011.188

CAS  Article  PubMed  Google Scholar 

30.

Hempel SL, Buettner GR, O’Malley YQ, Wessels DA, Flaherty DM (1999) Dihydrofluorescein diacetate is superior for detecting intracellular oxidants: comparison with 2,7-dichlorodihydrofluorescein diacetate, 5(and 6)-carboxy-2,7-dichlorodihydrofluorescein diacetate, and dihydrorhodamine 123. Free Radic Biol Med 27:146–159. https://doi.org/10.1016/s0891-5849(99)00061-1

CAS  Article  PubMed  Google Scholar 

31.

Jakubowski W, Bartosz G (2000) 2,7-dichlorofluorescin oxidation and reactive oxygen species: what does it measure? Cell Biol Int 24:757–760. https://doi.org/10.1006/cbir.2000.0556

CAS  Article  PubMed  Google Scholar 

32.

Souza TA, Franchi LP, Rosa LR, da Veiga MA, Takahashi CS (2016) Cytotoxicity and genotoxicity of silver nanoparticles of different sizes in CHO-K1 and CHO-XRS5 cell lines. Mutat Res Genet 795:70-83. https://doi.org/10.1016/j.mrgentox.2015.11.002

Article  Google Scholar 

33.

Bahadar H, Maqbool F, Niaz K, Abdollahi M (2016) Toxicity of nanoparticles and an overview of current experimental models. Iran Biomed J 20:1–11. https://doi.org/10.7508/ibj.2016.01.001

Article  PubMed  PubMed Central  Google Scholar 

34.

Bhabra G, Sood A, Fisher B et al (2009) Nanoparticles can cause DNA damage across a cellular barrier. Nature Nanotech 4:876–883. https://doi.org/10.1038/nnano.2009.313

CAS  Article  Google Scholar 

35.

Rim KT, Song SW, Kim HY (2013) Oxidative DNA damage from nanoparticle exposure and its application to workers’ health: a literature review. Saf Health Work 4:177–186. https://doi.org/10.1016/j.shaw.2013.07.006

Article  PubMed  PubMed Central  Google Scholar 

36.

Vergaro V, Abdullayev E, Lvov YM, Zeitoun A, Cingolani R, Rinaldi R, Leporatti S (2010) Cytocompatibility and uptake of Halloysite clay nanotubes. Biomacromol 11:820–826. https://doi.org/10.1021/bm9014446

CAS  Article  Google Scholar 

37.

Verma NK, Moore E, Blau W, Volkov Y, Babu PR (2012) Cytotoxicity evaluation of nanoclays in human epithelial cell line A549 using high content screening and real-time impedance analysis. J Nanopart Res 14:1137. https://doi.org/10.1007/s11051-012-1137-5

CAS  Article  Google Scholar 

38.

Lai X, Agarwal M, Lvov YM, Pachpande C, Varahramyan K, Witzmann FA (2013) Proteomic profiling of Halloysite clay nanotube exposure in intestinal cell co-culture. J Appl Toxicol 33:1316–1329. https://doi.org/10.1002/jat.2858

CAS  Article  PubMed  PubMed Central  Google Scholar 

39.

Ahmed FR, Shoaib MH, AzharM, Um SH, Yousuf RI, Hasmi S, Dar A (2015) In-vitro assessment of cytotoxicity of halloysite nanotubes against HepG2, HCT116 and human peripheral blood lymphocytes. Colloids Surf B 135:50–55. https://doi.org/10.1016/j.colsurfb.2015.07.021

40.

Monteiro-Riviere NA, Nemanich RJ, Inman AO, Wang YY, Riviere JE (2005) Multi-walled carbon nanotube interactions with human epidermal keratinocytes. Toxicol Lett 155:377–384. https://doi.org/10.1016/j.toxlet.2004.11.004

CAS  Article  PubMed  Google Scholar 

41.

Casey A, Herzog E, Davoren M, Lyng FM, Byrne HJ, Chambers G (2007) Spectroscopic analysis confirms the interactions between single walled carbon nanotubes and various dyes commonly used to assess cytotoxicity. Carbon 45:1425–1432. https://doi.org/10.1016/j.carbon.2007.03.033

CAS  Article  Google Scholar 

42.

Ponti J, Colognato R, Rauscher H, Gioria S, Broggi F, Franchini F, Pascual C, Giudetti G, Rossi F (2010) Colony forming efficiency and microscopy analysis of multi-wall carbon nanotubes cell interaction. Toxicol Lett 197:29–37. https://doi.org/10.

留言 (0)

沒有登入
gif