Molecular mechanism of empagliflozin cardioprotection in 5-fluorouracil (5-FU)-induced cardiotoxicity via modulation of SGLT2 and TNFα/TLR/NF-κB signaling pathway in rats

Safarpour S, Safarpour S, Pirzadeh M, Moghadamnia AA, Ebrahimpour A, Shirafkan F, Mansoori R, Kazemi S, Hosseini M (2022) Colchicine ameliorates 5-fluorouracil-induced cardiotoxicity in rats. Oxid Med Cell Longev 2022:6194532. https://doi.org/10.1155/2022/6194532

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ghafouri-Fard S, Abak A, Tondro Anamag F, Shoorei H, Fattahi F, Javadinia SA, Basiri A, Taheri M (2021) 5-Fluorouracil: a narrative review on the role of regulatory mechanisms in driving resistance to this chemotherapeutic agent. Front Oncol 11:658636. https://doi.org/10.3389/fonc.2021.658636

Article  CAS  PubMed  PubMed Central  Google Scholar 

Refaie MMM, Shehata S, Bayoumi AMA, El-Tahawy NFG, Abdelzaher WY (2022) The IL-6/STAT signaling pathway and pparα are involved in mediating the dose-dependent cardioprotective effects of fenofibrate in 5-fluorouracil-induced cardiotoxicity. Cardiovasc Drugs Ther 36:817–827. https://doi.org/10.1007/s10557-021-07214-x

Article  CAS  PubMed  Google Scholar 

Shiga T, Hiraide M (2020) Cardiotoxicities of 5-fluorouracil and other fluoropyrimidines. Curr Treat Options Oncol 21:27. https://doi.org/10.1007/s11864-020-0719-1

Article  PubMed  PubMed Central  Google Scholar 

Liu T, Zhang L, Joo D, Sun C (2017) NF-κB signaling in inflammation. Signal Transduct Target Ther 2:e17023. https://doi.org/10.1038/sigtrans.2017.23

Article  Google Scholar 

Xinyong C, Zhiyi Z, Lang H, Peng Y, Xiaocheng W, Ping Z, Liang S (2020) The role of toll-like receptors in myocardial toxicity induced by doxorubicin. Immunol Lett 217:56–64. https://doi.org/10.1016/j.imlet.2019.11.001

Article  CAS  PubMed  Google Scholar 

Refaie MMM, Abdel-Gaber SA, Rahman SAAE, Hafez SMNA, Khalaf HM (2022) Cardioprotective effects of bosentan in 5-fluorouracil-induced cardiotoxicity. Toxicology 465:153042. https://doi.org/10.1016/j.tox.2021.153042

Article  CAS  PubMed  Google Scholar 

Al-Taher AY, Morsy MA, Rifaai RA, Zenhom NM, Abdel-Gaber SA (2020) Paeonol attenuates methotrexate-induced cardiac toxicity in rats by inhibiting oxidative stress and suppressing tlr4-induced nf-kappab inflammatory pathway. Mediators Inflamm 2020:8641026. https://doi.org/10.1155/2020/8641026

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ala M (2021) SGLT2 inhibition for cardiovascular diseases, chronic kidney disease, and NAFLD. Endocrinology 162:bqab157. https://doi.org/10.1210/endocr/bqab157

Article  CAS  PubMed  Google Scholar 

Barış VÖ, Dinçsoy AB, Gedikli E, Zırh S, Müftüoğlu S, Erdem A (2021) Empagliflozin significantly prevents the doxorubicin-induced acute cardiotoxicity via non-antioxidant pathways. Cardiovasc Toxicol 21:747–758. https://doi.org/10.1007/s12012-021-09665-y

Article  CAS  PubMed  Google Scholar 

Connelly KA, Zhang Y, Desjardins JF, Nghiem L, Visram A, Batchu SN, Yerra VG, Kabir G, Thai K, Advani A, Gilbert RE (2020) Load-independent effects of empagliflozin contribute to improved cardiac function in experimental heart failure with reduced ejection fraction. Cardiovasc Diabetol 1:13. https://doi.org/10.1186/s12933-020-0994-y

Article  CAS  Google Scholar 

Gordon M, Meagher P, Connelly KA (2021) Effect of Empagliflozin and liraglutide on the nucleotide-binding and oligomerization domain-like receptor family pyrin domain-containing 3 inflammasome in a rodent model of type 2 diabetes mellitus. Can J Diabetes 45:553–556. https://doi.org/10.1016/j.jcjd.2020.11.003

Article  PubMed  Google Scholar 

Quagliariello V, De Laurentiis M, Rea D, Barbieri A, Monti MG, Carbone A, Paccone A, Altucci L, Conte M, Canale ML, Botti G, Maurea N (2021) The SGLT-2 inhibitor empagliflozin improves myocardial strain, reduces cardiac fibrosis and pro-inflammatory cytokines in non-diabetic mice treated with doxorubicin. Cardiovasc Diabetol 20:150. https://doi.org/10.1186/s12933-021-01346-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bugga P, Mohammed SA, Alam MJ, Katare P, Meghwani H, Maulik SK, Arava S, Banerjee SK (2022) Empagliflozin prohibits high-fructose diet-induced cardiac dysfunction in rats via attenuation of mitochondria-driven oxidative stress. Life Sci 307:120862. https://doi.org/10.1016/j.lfs.2022.120862

Article  CAS  PubMed  Google Scholar 

Katsiki N, Kotsa K, Kotsis V (2020) Empagliflozin effects on cardiac remodeling: re-shaping the future of heart failure prevention. Expert Rev Cardiovasc Ther 18:841–842. https://doi.org/10.1080/14779072.2020.1822069

Article  CAS  PubMed  Google Scholar 

Ren C, Sun K, Zhang Y, Hu Y, Hu B, Zhao J, He Z, Ding R, Wang W, Liang C (2021) Sodium-glucose cotransporter-2 inhibitor empagliflozin ameliorates sunitinib-induced cardiac dysfunction via regulation of ampk-mtor signaling pathway-mediated autophagy. Front Pharmacol 12:664181. https://doi.org/10.3389/fphar.2021.664181

Article  CAS  PubMed  PubMed Central  Google Scholar 

Russo M, Della Sala A, Tocchetti CG, Porporato PE, Ghigo A (2021) Metabolic aspects of anthracycline cardiotoxicity. Curr Treat Options Oncol 22:18. https://doi.org/10.1007/s11864-020-00812-1

Article  PubMed  PubMed Central  Google Scholar 

Yurista SR, Silljé HHW, Oberdorf-Maass SU, Schouten EM, Pavez Giani MG, Hillebrands JL, van Goor H, van Veldhuisen DJ, de Boer RA, Westenbrink BD (2019) Sodium-glucose co-transporter 2 inhibition with empagliflozin improves cardiac function in non-diabetic rats with left ventricular dysfunction after myocardial infarction. Eur J Heart Fail 21:862–873. https://doi.org/10.1002/ejhf.1473

Article  CAS  PubMed  Google Scholar 

Mohamed ET, Safwat GM (2016) Evaluation of cardioprotective activity of Lepidium sativum seed powder in albino rats treated with 5-fluorouracil. Beni-Suef Univ J Basic Appl Sci 5:208–215. https://doi.org/10.1016/j.bjbas.2016.05.001

Article  Google Scholar 

Miguel M, Muguerza B, Sanchez E, Delado MA, Recio I, Ramos S, Aleixandre MA (2005) Changes in arterial blood pressure caused in hypertensive rats by long-term intake of milk fermented by Enterococcus faecalis CECT 5728. Br J Nutr 93:36–43. https://doi.org/10.1079/bjn20051450

Article  Google Scholar 

Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Meth Enzymol 52:302–310. https://doi.org/10.1016/s0076-6879(78)52032-6

Article  CAS  Google Scholar 

Moron MS, Depierre JW, Mannervik B (1979) Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochim Biophys Acta 582:67–78. https://doi.org/10.1016/0304-4165(79)90289-7

Article  CAS  PubMed  Google Scholar 

Chen Y, Zhang Y, Huo Y, Wang D, Hong Y (2016) Adrenomedullin mediates tumor necrosis factor-alpha-induced responses in dorsal root ganglia in rats. Brain Res 1644:183–191. https://doi.org/10.1016/j.brainres.2016.05.021

Article  CAS  PubMed  Google Scholar 

Chadha S, Wang L, Hancock WW, Beier UH (2019) Sirtuin-1 in immunotherapy: a janus-headed target. J Leukoc Biol 106:337–343. https://doi.org/10.1002/JLB.2RU1118-422R

Article  CAS  PubMed  Google Scholar 

El-Agamy DS, Elkablawy MA, Abo-Haded HM (2017) Modulation of cyclophosphamide-induced cardiotoxicity by methyl palmitate. Cancer Chemother Pharmacol 79:399–409. https://doi.org/10.1007/s00280-016-3233-1

Article  CAS  PubMed  Google Scholar 

Nihon-Yanagi Y, Wakayama M, Tochigi N, Saito F, Ogata H, Shibuya K (2021) Immunohistochemical analysis of toll-like receptors, MyD88, and TRIF in human papillary thyroid carcinoma and anaplastic thyroid carcinoma. J Thyroid Res 2021:4226491. https://doi.org/10.1155/2021/4226491

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kauppila JH, Mattila AE, Karttunen TJ, Salo T (2013) Toll-like receptor 5 (TLR5) expression is a novel predictive marker for recurrence and survival in squamous cell carcinoma of the tongue. Br J Cancer 108:638–643. https://doi.org/10.1038/bjc.2012.589

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peng J, Dong C, Wang C, Li W, Yu H, Zhang M, Zhao Q, Zhu B, Zhang J, Li W, Wang F, Wu Q, Zhou W, Yuan Y, Qiu M, Chen G (2018) Cardiotoxicity of 5-fluorouracil and capecitabine in Chinese patients: a prospective study. Cancer Commun (Lond) 38:22. https://doi.org/10.1186/s40880-018-0292-1

Article  PubMed  Google Scholar 

Desai A, Mohammed T, Patel KN, Almnajam M, Kim AS (2020) 5-Fluorouracil rechallenge after cardiotoxicity. Am J Case Rep 21:e924446. https://doi.org/10.12659/AJCR.924446

Article  PubMed  PubMed Central  Google Scholar 

Pereira-Oliveira M, Reis-Mendes A, Carvalho F, Remião F, Bastos ML, Costa VM (2019) Doxorubicin is key for the cardiotoxicity of FAC (5-Fluorouracil + adriamycin + cyclophosphamide) combination in differentiated H9c2 cells. Biomolecules 9:21. https://doi.org/10.3390/biom9010021

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barary M, Hosseinzadeh R, Kazemi S, Liang JJ, Mansoori R, Sio TT, Hosseini M, Moghadamnia AA (2022) The effect of propolis on 5-fluorouracil-induced cardiac toxicity in rats. Sci Rep 12:8661. https://doi.org/10.1038/s41598-022-12735-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Luo M, Yan D, Sun Q, Tao J, Xu L, Sun H, Zhao H (2020) Ginsenoside Rg1 attenuates cardiomyocyte apoptosis and inflammation via the TLR4/NF-kB/NLRP3 pathway. J Cell Biochem 121:2994–3004. https://doi.org/10.1002/jcb.29556

Article  CAS 

留言 (0)

沒有登入
gif