Nimodipine ameliorates subarachnoid hemorrhage-induced neuroinflammation and injury by protecting mitochondrial function and regulating autophagy

Palasz J, D’Antona L, Farrell S, Elborady MA, Watkins LD, Toma AK. External ventricular drain management in subarachnoid haemorrhage: a systematic review and meta-analysis. Neurosurg Rev. 2022;45:365–73.

Article  PubMed  Google Scholar 

de Jong G, Aquarius R, Sanaan B, et al. Prediction models in aneurysmal subarachnoid hemorrhage: forecasting clinical outcome with artificial intelligence. Neurosurgery. 2021;88:E427–34.

Article  PubMed  Google Scholar 

Morone PJ, Yan W, Adcock J, et al. Vasorelaxing cell permeant phosphopeptide mimeti-cs for subarachnoid hemorrhage. Eur J Pharmacol. 2021;900:174038.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ly JV, Ma H, Shaloo S, Clissold B, Phan T. Convexity subarachnoid haemorrhage: a practical guide. Pract Neurol. 2023;23:368–75.

Article  PubMed  PubMed Central  Google Scholar 

Zhang XS, Lu Y, Li W, et al. Cerebroprotection by dioscin after experimental subarachnoid haemorrhage via inhibiting NLRP3 inflammasome through SIRT1-dependent pathway. Br J Pharmacol. 2021;178:3648–66.

Article  PubMed  CAS  Google Scholar 

Zhao D, He X, Liu L, et al. Correlation between arteriole membrane potential and cerebral vasospasm after subarachnoid hemorrhage in rats. Neurol India. 2020;68:327–32.

Article  PubMed  Google Scholar 

Geraldini F, De Cassai A, Diana P, et al. A comparison between enteral and intravenous nimodipine in subarachnoid hemorrhage: a systematic review and network meta-analysis. Neurocrit Care. 2022;36:1071–9.

Article  PubMed  CAS  Google Scholar 

Dayyani M, Sadeghirad B, Grotta JC, et al. Prophylactic therapies for morbidity and mortality after aneurysmal subarachnoid hemorrhage: a systematic review and network meta-analysis of randomized trials. Stroke. 2022;53:1993–2005.

Article  PubMed  Google Scholar 

Schwarting J, Harapan BN, Lin X, Plesnila N, Terpolilli NA. Nimodipine reduces microvasospasms after experimental subarachnoid hemorrhage. Stroke. 2023;54:2666–70.

Article  PubMed  CAS  Google Scholar 

Mahmoud L, Zullo AR, Blake C, et al. Safety of modified nimodipine dosing in aneurysmal subarachnoid hemorrhage. World Neurosurg. 2022;158:e501–8.

Article  PubMed  Google Scholar 

Hu X, Zhang H, Zhang Q, Yao X, Ni W, Zhou K. Emerging role of STING signalling in CNS injury: inflammation, autophagy, necroptosis, ferroptosis and pyroptosis. J Neuroinflammation. 2022;19:242.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Zhao Y, Luo Y, Liu Y, Lenahan C, Wu Q, Chen S. The role of autophagy and apoptosis in early brain injury after subarachnoid hemorrhage: an updated review. Mol Biol Rep. 2022;49:10775–82.

Article  PubMed  CAS  Google Scholar 

Chen Y, Guo Z, Peng X, Xie W, Chen L, Tan Z. Nimodipine represses AMPK phosphorylation and excessive autophagy after chronic cerebral hypoperfusion in rats. Brain Res Bull. 2018;140:88–96.

Article  PubMed  CAS  Google Scholar 

Fu Z, Kim H, Morse PT, et al. The mitochondrial NAD (+) transporter SLC25A51 is a fasting-induced gene affecting SIRT3 functions. Metabolism. 2022;135:155275.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Zhang Y, Yang X, Ge X, Zhang F. Puerarin attenuates neurological deficits via Bcl-2/Bax/cleaved caspase-3 and Sirt3/SOD2 apoptotic pathways in subarachnoid hemorrhage mice. Biomed Pharmacother. 2019;109:726–33.

Article  PubMed  CAS  Google Scholar 

Zhang Z, Han K, Wang C, Sun C, Jia N. Dioscin protects against abeta1-42 oligomers-induced neurotoxicity via the function of SIRT3 and autophagy. Chem Pharm Bull (Tokyo). 2020;68:717–25.

Article  PubMed  CAS  Google Scholar 

Yan WJ, Liu RB, Wang LK, et al. Sirt3-mediated autophagy contributes to resveratrol-induced protection against ER stress in HT22 cells. Front Neurosci. 2018;12:116.

Article  PubMed  PubMed Central  Google Scholar 

Cao Y, Li Y, He C, et al. Selective ferroptosis inhibitor liproxstatin 1 attenuates neurological deficits and neuroinflammation after subarachnoid hemorrhage. Neurosci Bull. 2021;37:535–49.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chen M, Zhang Q, Liu H, Zou W, Wei X. Influence of nimodipine combined with ulinastatin on neurological function and inflammatory reaction in patients with cerebral vasospasm after subarachnoid hemorrhage. Clin Neurol Neurosurg. 2021;210:106981.

Article  PubMed  Google Scholar 

Liu J, Sun C, Wang Y, et al. Efficacy of nimodipine in the treatment of subarachnoid hemor-rhage: a meta-analysis. Arq Neuropsiquiatr. 2022;80:663–70.

Article  PubMed  PubMed Central  Google Scholar 

Lei G, Rao Z, Hu Y. The efficacy of different nimodipine administration route for treating subarachnoid hemorrhage: a network meta-analysis. Medicine (Baltimore). 2023;102:e34789.

Article  PubMed  CAS  Google Scholar 

Yu W, Huang Y, Zhang X, et al. Effectiveness comparisons of drug therapies for postoperative aneurysmal subarachnoid hemorrhage patients: network meta-analysis and systematic review. BMC Neurol. 2021;21:294.

Article  PubMed  PubMed Central  Google Scholar 

Hockel K, Diedler J, Steiner J, et al. Long-term, continuous intra-arterial nimodipine treatment of severe vasospasm after aneurysmal subarachnoid hemorrhage. World Neurosurg. 2016;88:104–12.

Article  PubMed  Google Scholar 

Liu GJ, Luo J, Zhang LP, et al. Meta-analysis of the effectiveness and safety of prophylactic use of nimodipine in patients with an aneurysmal subarachnoid haemorrhage. CNS Neurol Disord Drug Targets. 2011;10:834–44.

Article  PubMed  CAS  Google Scholar 

Isse FA, Abdallah YEH, Mahmoud SH. The impact of nimodipine administration through feeding tube on outcomes in patients with aneurysmal subarachnoid hemorrhage. J Pharm Pharm Sci. 2020;23:100–8.

Article  PubMed  CAS  Google Scholar 

Qin Y, Li G, Sun Z, Xu X, Gu J, Gao F. Comparison of the effects of nimodipine and deferoxamine on brain injury in rat with subarachnoid hemorrhage. Behav Brain Res. 2019;367:194–200.

Article  PubMed  CAS  Google Scholar 

Zhao Y, Zhang J, Zheng Y, et al. NAD (+) improves cognitive function and reduces neuroinflammation by ameliorating mitochondrial damage and decreasing ROS production in chronic cerebral hypoperfusion models through Sirt1/PGC-1alpha pathway. J Neuroinflammation. 2021;18:207.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Xu P, Tao C, Zhu Y, et al. TAK1 mediates neuronal pyroptosis in early brain injury after subarachnoid hemorrhage. J Neuroinflammation. 2021;18:188.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Yang S, Chen X, Li S, Sun B, Hang C. Melatonin treatment regulates SIRT3 expression in early brain injury (EBI) due to reactive oxygen species (ROS) in a mouse model of subarachnoid hemorrhage (SAH). Med Sci Monit. 2018;24:3804–14.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Shideman CR, Hu S, Peterson PK, Thayer SA. CCL5 evokes calcium signals in microglia through a kinase-, phosphoinositide-, and nucleotide-dependent mechanism. J Neurosci Res. 2006;83(8):1471–84.

Article  PubMed  CAS  Google Scholar 

Song S, Ding Y, Dai GL, et al. Sirtuin 3 deficiency exacerbates diabetic cardiomyopathy via necroptosis enhancement and NLRP3 activation. Acta Pharmacol Sin. 2021;42:230–41.

留言 (0)

沒有登入
gif