Palasz J, D’Antona L, Farrell S, Elborady MA, Watkins LD, Toma AK. External ventricular drain management in subarachnoid haemorrhage: a systematic review and meta-analysis. Neurosurg Rev. 2022;45:365–73.
de Jong G, Aquarius R, Sanaan B, et al. Prediction models in aneurysmal subarachnoid hemorrhage: forecasting clinical outcome with artificial intelligence. Neurosurgery. 2021;88:E427–34.
Morone PJ, Yan W, Adcock J, et al. Vasorelaxing cell permeant phosphopeptide mimeti-cs for subarachnoid hemorrhage. Eur J Pharmacol. 2021;900:174038.
Article PubMed PubMed Central CAS Google Scholar
Ly JV, Ma H, Shaloo S, Clissold B, Phan T. Convexity subarachnoid haemorrhage: a practical guide. Pract Neurol. 2023;23:368–75.
Article PubMed PubMed Central Google Scholar
Zhang XS, Lu Y, Li W, et al. Cerebroprotection by dioscin after experimental subarachnoid haemorrhage via inhibiting NLRP3 inflammasome through SIRT1-dependent pathway. Br J Pharmacol. 2021;178:3648–66.
Article PubMed CAS Google Scholar
Zhao D, He X, Liu L, et al. Correlation between arteriole membrane potential and cerebral vasospasm after subarachnoid hemorrhage in rats. Neurol India. 2020;68:327–32.
Geraldini F, De Cassai A, Diana P, et al. A comparison between enteral and intravenous nimodipine in subarachnoid hemorrhage: a systematic review and network meta-analysis. Neurocrit Care. 2022;36:1071–9.
Article PubMed CAS Google Scholar
Dayyani M, Sadeghirad B, Grotta JC, et al. Prophylactic therapies for morbidity and mortality after aneurysmal subarachnoid hemorrhage: a systematic review and network meta-analysis of randomized trials. Stroke. 2022;53:1993–2005.
Schwarting J, Harapan BN, Lin X, Plesnila N, Terpolilli NA. Nimodipine reduces microvasospasms after experimental subarachnoid hemorrhage. Stroke. 2023;54:2666–70.
Article PubMed CAS Google Scholar
Mahmoud L, Zullo AR, Blake C, et al. Safety of modified nimodipine dosing in aneurysmal subarachnoid hemorrhage. World Neurosurg. 2022;158:e501–8.
Hu X, Zhang H, Zhang Q, Yao X, Ni W, Zhou K. Emerging role of STING signalling in CNS injury: inflammation, autophagy, necroptosis, ferroptosis and pyroptosis. J Neuroinflammation. 2022;19:242.
Article PubMed PubMed Central CAS Google Scholar
Zhao Y, Luo Y, Liu Y, Lenahan C, Wu Q, Chen S. The role of autophagy and apoptosis in early brain injury after subarachnoid hemorrhage: an updated review. Mol Biol Rep. 2022;49:10775–82.
Article PubMed CAS Google Scholar
Chen Y, Guo Z, Peng X, Xie W, Chen L, Tan Z. Nimodipine represses AMPK phosphorylation and excessive autophagy after chronic cerebral hypoperfusion in rats. Brain Res Bull. 2018;140:88–96.
Article PubMed CAS Google Scholar
Fu Z, Kim H, Morse PT, et al. The mitochondrial NAD (+) transporter SLC25A51 is a fasting-induced gene affecting SIRT3 functions. Metabolism. 2022;135:155275.
Article PubMed PubMed Central CAS Google Scholar
Zhang Y, Yang X, Ge X, Zhang F. Puerarin attenuates neurological deficits via Bcl-2/Bax/cleaved caspase-3 and Sirt3/SOD2 apoptotic pathways in subarachnoid hemorrhage mice. Biomed Pharmacother. 2019;109:726–33.
Article PubMed CAS Google Scholar
Zhang Z, Han K, Wang C, Sun C, Jia N. Dioscin protects against abeta1-42 oligomers-induced neurotoxicity via the function of SIRT3 and autophagy. Chem Pharm Bull (Tokyo). 2020;68:717–25.
Article PubMed CAS Google Scholar
Yan WJ, Liu RB, Wang LK, et al. Sirt3-mediated autophagy contributes to resveratrol-induced protection against ER stress in HT22 cells. Front Neurosci. 2018;12:116.
Article PubMed PubMed Central Google Scholar
Cao Y, Li Y, He C, et al. Selective ferroptosis inhibitor liproxstatin 1 attenuates neurological deficits and neuroinflammation after subarachnoid hemorrhage. Neurosci Bull. 2021;37:535–49.
Article PubMed PubMed Central CAS Google Scholar
Chen M, Zhang Q, Liu H, Zou W, Wei X. Influence of nimodipine combined with ulinastatin on neurological function and inflammatory reaction in patients with cerebral vasospasm after subarachnoid hemorrhage. Clin Neurol Neurosurg. 2021;210:106981.
Liu J, Sun C, Wang Y, et al. Efficacy of nimodipine in the treatment of subarachnoid hemor-rhage: a meta-analysis. Arq Neuropsiquiatr. 2022;80:663–70.
Article PubMed PubMed Central Google Scholar
Lei G, Rao Z, Hu Y. The efficacy of different nimodipine administration route for treating subarachnoid hemorrhage: a network meta-analysis. Medicine (Baltimore). 2023;102:e34789.
Article PubMed CAS Google Scholar
Yu W, Huang Y, Zhang X, et al. Effectiveness comparisons of drug therapies for postoperative aneurysmal subarachnoid hemorrhage patients: network meta-analysis and systematic review. BMC Neurol. 2021;21:294.
Article PubMed PubMed Central Google Scholar
Hockel K, Diedler J, Steiner J, et al. Long-term, continuous intra-arterial nimodipine treatment of severe vasospasm after aneurysmal subarachnoid hemorrhage. World Neurosurg. 2016;88:104–12.
Liu GJ, Luo J, Zhang LP, et al. Meta-analysis of the effectiveness and safety of prophylactic use of nimodipine in patients with an aneurysmal subarachnoid haemorrhage. CNS Neurol Disord Drug Targets. 2011;10:834–44.
Article PubMed CAS Google Scholar
Isse FA, Abdallah YEH, Mahmoud SH. The impact of nimodipine administration through feeding tube on outcomes in patients with aneurysmal subarachnoid hemorrhage. J Pharm Pharm Sci. 2020;23:100–8.
Article PubMed CAS Google Scholar
Qin Y, Li G, Sun Z, Xu X, Gu J, Gao F. Comparison of the effects of nimodipine and deferoxamine on brain injury in rat with subarachnoid hemorrhage. Behav Brain Res. 2019;367:194–200.
Article PubMed CAS Google Scholar
Zhao Y, Zhang J, Zheng Y, et al. NAD (+) improves cognitive function and reduces neuroinflammation by ameliorating mitochondrial damage and decreasing ROS production in chronic cerebral hypoperfusion models through Sirt1/PGC-1alpha pathway. J Neuroinflammation. 2021;18:207.
Article PubMed PubMed Central CAS Google Scholar
Xu P, Tao C, Zhu Y, et al. TAK1 mediates neuronal pyroptosis in early brain injury after subarachnoid hemorrhage. J Neuroinflammation. 2021;18:188.
Article PubMed PubMed Central CAS Google Scholar
Yang S, Chen X, Li S, Sun B, Hang C. Melatonin treatment regulates SIRT3 expression in early brain injury (EBI) due to reactive oxygen species (ROS) in a mouse model of subarachnoid hemorrhage (SAH). Med Sci Monit. 2018;24:3804–14.
Article PubMed PubMed Central CAS Google Scholar
Shideman CR, Hu S, Peterson PK, Thayer SA. CCL5 evokes calcium signals in microglia through a kinase-, phosphoinositide-, and nucleotide-dependent mechanism. J Neurosci Res. 2006;83(8):1471–84.
Article PubMed CAS Google Scholar
Song S, Ding Y, Dai GL, et al. Sirtuin 3 deficiency exacerbates diabetic cardiomyopathy via necroptosis enhancement and NLRP3 activation. Acta Pharmacol Sin. 2021;42:230–41.
留言 (0)