Title: Identification of a novel GRHPR mutation in primary hyperoxaluria type 2 and establishment of patient-derived iPSC line

Oner M, Koutsoukos PG, Robertson WG. Kidney stone formation—Thermodynamic, kinetic, and clinical aspects. Water-Formed Deposits [Internet]. Elsevier; 2022 [cited 2024 Jun 26]. p. 511–41. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128228968000352

Zhang D, Li S, Zhang Z, Li N, Yuan X, Jia Z, et al. Urinary stone composition analysis and clinical characterization of 1520 patients in central China. Sci Rep. 2021;11:6467.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Wang Z, Zhang Y, Zhang J, Deng Q, Liang H. Recent advances on the mechanisms of kidney stone formation (Review). Int J Mol Med. 2021;48:149.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Khan SR, Pearle MS, Robertson WG, Gambaro G, Canales BK, Doizi S, et al. Kidney stones. Nat Rev Dis Primers. 2016;2:16008.

Article  PubMed  PubMed Central  Google Scholar 

Khan SR, Canales BK, Dominguez-Gutierrez PR. Randall’s plaque and calcium oxalate stone formation: role for immunity and inflammation. Nat Rev Nephrol. 2021;17:417–33.

Article  PubMed  CAS  Google Scholar 

Singh P, Harris PC, Sas DJ, Lieske JC. The genetics of kidney stone disease and nephrocalcinosis. Nat Rev Nephrol. 2022;18:224–40.

Article  PubMed  Google Scholar 

Wang X, Wang Q. Current dietary and medical prevention of renal calcium oxalate stones. IJGM. 2024;17:1635–49.

Article  Google Scholar 

Bao D, Wang Y, Zhao M. Oxalate nephropathy and the mechanism of oxalate-induced kidney injury. Kidney Dis. 2023;9:459–68.

Article  Google Scholar 

Davalos M, Konno S, Eshghi M, Choudhury M. Oxidative renal cell injury induced by calcium oxalate crystal and renoprotection with antioxidants: a possible role of oxidative stress in nephrolithiasis. J Endourol. 2010;24:339–45.

Article  PubMed  Google Scholar 

Booth MPS, Conners R, Rumsby G, Brady RL. Structural basis of substrate specificity in human glyoxylate reductase/hydroxypyruvate reductase. J Mol Biol. 2006;360:178–89.

Article  PubMed  CAS  Google Scholar 

Shee K, Stoller ML. Perspectives in primary hyperoxaluria—historical, current and future clinical interventions. Nat Rev Urol. 2022;19:137–46.

Article  PubMed  Google Scholar 

Webster KE, Ferree PM, Holmes RP, Cramer SD. Identification of missense, nonsense, and deletion mutations in the GRHPR gene in patients with primary hyperoxaluria type II (PH2). Hum Genet. 2000;107:176–85.

Article  PubMed  CAS  Google Scholar 

Cregeen DP, Williams EL, Hulton S, Rumsby G. Molecular analysis of the glyoxylate reductase (GRHPR) gene and description of mutations underlying primary hyperoxaluria type 2. Hum Mutat. 2003;22:497–497.

Article  PubMed  Google Scholar 

Groothoff JW, Metry E, Deesker L, Garrelfs S, Acquaviva C, Almardini R, et al. Clinical practice recommendations for primary hyperoxaluria: an expert consensus statement from ERKNet and OxalEurope. Nat Rev Nephrol. 2023;19:194–211.

Article  PubMed  Google Scholar 

Garrelfs SF, Rumsby G, Peters-Sengers H, Erger F, Groothoff JW, Beck BB, et al. Patients with primary hyperoxaluria type 2 have significant morbidity and require careful follow-up. Kidney Int. 2019;96:1389–99.

Article  PubMed  CAS  Google Scholar 

Bhasin B. Primary and secondary hyperoxaluria: Understanding the enigma. WJN. 2015;4:235.

Article  PubMed  PubMed Central  Google Scholar 

Kashiv P, Dubey S, Sejpal KN, Malde S, Gurjar P, Pasari A, et al. Young Male With End-Stage Renal Disease Due to Primary Hyperoxaluria Type 2: A Rare Presentation. Cureus [Internet]. 2023 [cited 2024 Jun 26]; Available from: https://www.cureus.com/articles/183879-young-male-with-end-stage-renal-disease-due-to-primary-hyperoxaluria-type-2-a-rare-presentation

Metry EL, Van Dijk LMM, Peters-Sengers H, Oosterveld MJS, Groothoff JW, Ploeg RJ, et al. Transplantation outcomes in patients with primary hyperoxaluria: a systematic review. Pediatr Nephrol. 2021;36:2217–26.

Article  PubMed  PubMed Central  Google Scholar 

Abramson J, Adler J, Dunger J, Evans R, Green T, Pritzel A, et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature. 2024;630:493–500.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Cramer SD, Ferree PM, Lin K, Milliner DS, Holmes RP. The gene encoding hydroxypyruvate reductase (GRHPR) is mutated in patients with primary hyperoxaluria type II. Hum Mol Genet. 1999;8:2063–9.

Article  PubMed  CAS  Google Scholar 

Levin-Iaina N, Dinour D, Romero L, Ron R, Brady RL, Cramer SD, et al. Late diagnosis of primary hyperoxaluria type 2 in the adult: effect of a novel mutation in grhpr gene on enzymatic activity and molecular modeling. J Urol. 2009;181:2146–51.

Article  PubMed  CAS  Google Scholar 

Lassalle L, Engilberge S, Madern D, Vauclare P, Franzetti B, Girard E. New insights into the mechanism of substrates trafficking in Glyoxylate/Hydroxypyruvate reductases. Sci Rep. 2016;6:20629.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Poverennaya IV, Roytberg MA. Spliceosomal introns: features, functions, and evolution. Biochemistry (Mosc). 2020;85:725–34.

Article  PubMed  CAS  Google Scholar 

Anna A, Monika G. Splicing mutations in human genetic disorders: examples, detection, and confirmation. J Appl Genetics. 2018;59:253–68.

Article  CAS  Google Scholar 

Ge YC, Zhan RC, Wang L, Ning C, Du Y, Li J, Tian Y, Wang WY. Characteristics of genotype of monogenic nephrolithiasis in Chinese pediatric patients with nephrolithiasis. Zhonghua Yi Xue Za Zhi. 2021;101(38):3115–20.

PubMed  CAS  Google Scholar 

Liu Y, Zhao Z, Ge Y, He L, Qi S, Wang W. Clinical features and mutational spectrum of Chinese patients with primary hyperoxaluria type 2. Urolithiasis. 2024;52:74.

Article  PubMed  CAS  Google Scholar 

Takayama T, Takaoka N, Nagata M, Johnin K, Okada Y, Tanaka S, et al. Ethnic differences in GRHPR mutations in patients with primary hyperoxaluria type 2. Clin Genet. 2014;86:342–8.

Article  PubMed  CAS  Google Scholar 

Rosati J, Ferrari D, Altieri F, Tardivo S, Ricciolini C, Fusilli C, et al. Establishment of stable iPS-derived human neural stem cell lines suitable for cell therapies. Cell Death Dis. 2018;9:937.

Article  PubMed  PubMed Central  Google Scholar 

Suresh Babu S, Duvvuru H, Baker J, Switalski S, Shafa M, Panchalingam KM, et al. Characterization of human induced pluripotent stems cells: current approaches, challenges, and future solutions. Biotechnol Rep. 2023;37:e00784.

Article  CAS  Google Scholar 

留言 (0)

沒有登入
gif