Oner M, Koutsoukos PG, Robertson WG. Kidney stone formation—Thermodynamic, kinetic, and clinical aspects. Water-Formed Deposits [Internet]. Elsevier; 2022 [cited 2024 Jun 26]. p. 511–41. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128228968000352
Zhang D, Li S, Zhang Z, Li N, Yuan X, Jia Z, et al. Urinary stone composition analysis and clinical characterization of 1520 patients in central China. Sci Rep. 2021;11:6467.
Article PubMed PubMed Central CAS Google Scholar
Wang Z, Zhang Y, Zhang J, Deng Q, Liang H. Recent advances on the mechanisms of kidney stone formation (Review). Int J Mol Med. 2021;48:149.
Article PubMed PubMed Central CAS Google Scholar
Khan SR, Pearle MS, Robertson WG, Gambaro G, Canales BK, Doizi S, et al. Kidney stones. Nat Rev Dis Primers. 2016;2:16008.
Article PubMed PubMed Central Google Scholar
Khan SR, Canales BK, Dominguez-Gutierrez PR. Randall’s plaque and calcium oxalate stone formation: role for immunity and inflammation. Nat Rev Nephrol. 2021;17:417–33.
Article PubMed CAS Google Scholar
Singh P, Harris PC, Sas DJ, Lieske JC. The genetics of kidney stone disease and nephrocalcinosis. Nat Rev Nephrol. 2022;18:224–40.
Wang X, Wang Q. Current dietary and medical prevention of renal calcium oxalate stones. IJGM. 2024;17:1635–49.
Bao D, Wang Y, Zhao M. Oxalate nephropathy and the mechanism of oxalate-induced kidney injury. Kidney Dis. 2023;9:459–68.
Davalos M, Konno S, Eshghi M, Choudhury M. Oxidative renal cell injury induced by calcium oxalate crystal and renoprotection with antioxidants: a possible role of oxidative stress in nephrolithiasis. J Endourol. 2010;24:339–45.
Booth MPS, Conners R, Rumsby G, Brady RL. Structural basis of substrate specificity in human glyoxylate reductase/hydroxypyruvate reductase. J Mol Biol. 2006;360:178–89.
Article PubMed CAS Google Scholar
Shee K, Stoller ML. Perspectives in primary hyperoxaluria—historical, current and future clinical interventions. Nat Rev Urol. 2022;19:137–46.
Webster KE, Ferree PM, Holmes RP, Cramer SD. Identification of missense, nonsense, and deletion mutations in the GRHPR gene in patients with primary hyperoxaluria type II (PH2). Hum Genet. 2000;107:176–85.
Article PubMed CAS Google Scholar
Cregeen DP, Williams EL, Hulton S, Rumsby G. Molecular analysis of the glyoxylate reductase (GRHPR) gene and description of mutations underlying primary hyperoxaluria type 2. Hum Mutat. 2003;22:497–497.
Groothoff JW, Metry E, Deesker L, Garrelfs S, Acquaviva C, Almardini R, et al. Clinical practice recommendations for primary hyperoxaluria: an expert consensus statement from ERKNet and OxalEurope. Nat Rev Nephrol. 2023;19:194–211.
Garrelfs SF, Rumsby G, Peters-Sengers H, Erger F, Groothoff JW, Beck BB, et al. Patients with primary hyperoxaluria type 2 have significant morbidity and require careful follow-up. Kidney Int. 2019;96:1389–99.
Article PubMed CAS Google Scholar
Bhasin B. Primary and secondary hyperoxaluria: Understanding the enigma. WJN. 2015;4:235.
Article PubMed PubMed Central Google Scholar
Kashiv P, Dubey S, Sejpal KN, Malde S, Gurjar P, Pasari A, et al. Young Male With End-Stage Renal Disease Due to Primary Hyperoxaluria Type 2: A Rare Presentation. Cureus [Internet]. 2023 [cited 2024 Jun 26]; Available from: https://www.cureus.com/articles/183879-young-male-with-end-stage-renal-disease-due-to-primary-hyperoxaluria-type-2-a-rare-presentation
Metry EL, Van Dijk LMM, Peters-Sengers H, Oosterveld MJS, Groothoff JW, Ploeg RJ, et al. Transplantation outcomes in patients with primary hyperoxaluria: a systematic review. Pediatr Nephrol. 2021;36:2217–26.
Article PubMed PubMed Central Google Scholar
Abramson J, Adler J, Dunger J, Evans R, Green T, Pritzel A, et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature. 2024;630:493–500.
Article PubMed PubMed Central CAS Google Scholar
Cramer SD, Ferree PM, Lin K, Milliner DS, Holmes RP. The gene encoding hydroxypyruvate reductase (GRHPR) is mutated in patients with primary hyperoxaluria type II. Hum Mol Genet. 1999;8:2063–9.
Article PubMed CAS Google Scholar
Levin-Iaina N, Dinour D, Romero L, Ron R, Brady RL, Cramer SD, et al. Late diagnosis of primary hyperoxaluria type 2 in the adult: effect of a novel mutation in grhpr gene on enzymatic activity and molecular modeling. J Urol. 2009;181:2146–51.
Article PubMed CAS Google Scholar
Lassalle L, Engilberge S, Madern D, Vauclare P, Franzetti B, Girard E. New insights into the mechanism of substrates trafficking in Glyoxylate/Hydroxypyruvate reductases. Sci Rep. 2016;6:20629.
Article PubMed PubMed Central CAS Google Scholar
Poverennaya IV, Roytberg MA. Spliceosomal introns: features, functions, and evolution. Biochemistry (Mosc). 2020;85:725–34.
Article PubMed CAS Google Scholar
Anna A, Monika G. Splicing mutations in human genetic disorders: examples, detection, and confirmation. J Appl Genetics. 2018;59:253–68.
Ge YC, Zhan RC, Wang L, Ning C, Du Y, Li J, Tian Y, Wang WY. Characteristics of genotype of monogenic nephrolithiasis in Chinese pediatric patients with nephrolithiasis. Zhonghua Yi Xue Za Zhi. 2021;101(38):3115–20.
Liu Y, Zhao Z, Ge Y, He L, Qi S, Wang W. Clinical features and mutational spectrum of Chinese patients with primary hyperoxaluria type 2. Urolithiasis. 2024;52:74.
Article PubMed CAS Google Scholar
Takayama T, Takaoka N, Nagata M, Johnin K, Okada Y, Tanaka S, et al. Ethnic differences in GRHPR mutations in patients with primary hyperoxaluria type 2. Clin Genet. 2014;86:342–8.
Article PubMed CAS Google Scholar
Rosati J, Ferrari D, Altieri F, Tardivo S, Ricciolini C, Fusilli C, et al. Establishment of stable iPS-derived human neural stem cell lines suitable for cell therapies. Cell Death Dis. 2018;9:937.
Article PubMed PubMed Central Google Scholar
Suresh Babu S, Duvvuru H, Baker J, Switalski S, Shafa M, Panchalingam KM, et al. Characterization of human induced pluripotent stems cells: current approaches, challenges, and future solutions. Biotechnol Rep. 2023;37:e00784.
留言 (0)