Silymarin: a promising modulator of apoptosis and survival signaling in cancer

Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74:229–63. https://doi.org/10.3322/caac.21834.

Article  PubMed  Google Scholar 

Debela DT, Muzazu SGY, Heraro KD, et al. New approaches and procedures for cancer treatment: current perspectives. SAGE Open Med. 2021;9:20503121211034370.

Article  Google Scholar 

Aiello P, Sharghi M, Mansourkhani SM, et al. Medicinal plants in the prevention and treatment of colon cancer. Oxid Med Cell Longev. 2019;2019:51. https://doi.org/10.1155/2019/2075614.

Article  CAS  Google Scholar 

Wadhwa K, Pahwa R, Kumar M, et al. Mechanistic insights into the pharmacological significance of silymarin. Molecules. 2022. https://doi.org/10.3390/MOLECULES27165327.

Article  PubMed  Google Scholar 

Wang Y, Yuan AJ, Wu YJ, et al. Silymarin in cancer therapy: mechanisms of action, protective roles in chemotherapy-induced toxicity, and nanoformulations. J Funct Foods. 2023;100:105384. https://doi.org/10.1016/J.JFF.2022.105384.

Article  CAS  Google Scholar 

Hosseinabadi T, Lorigooini Z, Tabarzad M, et al. Silymarin antiproliferative and apoptotic effects: Insights into its clinical impact in various types of cancer. Phytother Res. 2019;33:2849–61. https://doi.org/10.1002/PTR.6470.

Article  PubMed  CAS  Google Scholar 

Fallah M, Davoodvandi A, Nikmanzar S, et al. Silymarin (milk thistle extract) as a therapeutic agent in gastrointestinal cancer. Biomed Pharmacother. 2021;142:112024. https://doi.org/10.1016/J.BIOPHA.2021.112024.

Article  PubMed  CAS  Google Scholar 

Archoo S, Naikoo SH, Tasduq SA. Role of herbal products as therapeutic agents against ultraviolet radiation-induced skin disorders. In: Sarwat M, Siddique H, editors. Herbal medicines: a boon for healthy human life. Cambridge: Academic Press; 2022. p. 345–60. https://doi.org/10.1016/B978-0-323-90572-5.00030-5.

Chapter  Google Scholar 

Luan LB, Zhao N. The absorption characteristics of silybin in small intestine of rat. Yao Xue Xue Bao. 2006;41:138–41.

PubMed  Google Scholar 

Wu JW, Lin LC, Hung SC, et al. Analysis of silibinin in rat plasma and bile for hepatobiliary excretion and oral bioavailability application. J Pharm Biomed Anal. 2007;45:635–41. https://doi.org/10.1016/J.JPBA.2007.06.026.

Article  PubMed  CAS  Google Scholar 

Sornsuvit C, Hongwiset D, Yotsawimonwat S, et al. The bioavailability and pharmacokinetics of silymarin SMEDDS formulation study in healthy thai volunteers. Evid Based Complement Alternat Med. 2018;2018:1507834.

Article  PubMed  PubMed Central  Google Scholar 

Tvrdý V, Pourová J, Jirkovský E, et al. Systematic review of pharmacokinetics and potential pharmacokinetic interactions of flavonolignans from silymarin. Med Res Rev. 2021;41:2195–246. https://doi.org/10.1002/MED.21791.

Article  PubMed  Google Scholar 

Choudhari AS, Mandave PC, Deshpande M, et al. Phytochemicals in cancer treatment: from preclinical studies to clinical practice. Front Pharmacol. 2020;10:1614.

Article  PubMed  PubMed Central  Google Scholar 

Ramasamy K, Agarwal R. Multitargeted therapy of cancer by silymarin. Cancer Lett. 2008;269:352. https://doi.org/10.1016/J.CANLET.2008.03.053.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Zhang Y, Ge Y, Ping X, et al. Synergistic apoptotic effects of silibinin in enhancing paclitaxel toxicity in human gastric cancer cell lines. Mol Med Rep. 2018;18:1835–41.

PubMed  CAS  Google Scholar 

Wang HJ, Tashiro SI, Onodera S, Ikejima T. Inhibition of insulin-like growth factor 1 receptor signaling enhanced silibinin-induced activation of death receptor and mitochondrial apoptotic pathways in human breast cancer MCF-7 cells. J Pharmacol Sci. 2008;107:260–9. https://doi.org/10.1254/JPHS.08054FP.

Article  PubMed  CAS  Google Scholar 

Wang Q, Zhang L, Yuan X, et al. The relationship between the Bcl-2/Bax proteins and the mitochondria-mediated apoptosis pathway in the differentiation of adipose-derived stromal cells into neurons. PLoS ONE. 2016;11: e0163327.

Article  PubMed  PubMed Central  Google Scholar 

Vaskivuo TE, Stenbäck F, Tapanainen JS. Apoptosis and apoptosis-related factors Bcl-2, Bax, tumor necrosis factor-α, and NF-κB in human endometrial hyperplasia and carcinoma. Cancer. 2002;95:1463–71.

Article  PubMed  CAS  Google Scholar 

Kim S-H, Choo G-S, Yoo E-S, et al. Silymarin inhibits proliferation of human breast cancer cells via regulation of the MAPK signaling pathway and induction of apoptosis. Oncol Lett. 2021;21:1–10.

Article  CAS  Google Scholar 

Katiyar SK, Roy AM, Baliga MS. Silymarin induces apoptosis primarily through a p53-dependent pathway involving Bcl-2/Bax, cytochrome c release, and caspase activation. Mol Cancer Ther. 2005;4:207–16.

Article  PubMed  CAS  Google Scholar 

Zhang M, Liu Y, Gao Y, Li S. Silibinin-induced glioma cell apoptosis by PI3K-mediated but Akt-independent downregulation of FoxM1 expression. Eur J Pharmacol. 2015;765:346–54.

Article  PubMed  CAS  Google Scholar 

Rascio F, Spadaccino F, Rocchetti MT, et al. The pathogenic role of PI3K/AKT pathway in cancer onset and drug resistance: an updated review. Cancers. 2021. https://doi.org/10.3390/CANCERS13163949.

Article  PubMed  Google Scholar 

Yao W, Gong H, Mei H, et al. Taxifolin targets PI3K and mTOR and inhibits glioblastoma multiforme. J Oncol. 2021. https://doi.org/10.1155/2021/5560915.

Article  PubMed  Google Scholar 

Yassin NYS, AbouZid SF, El-Kalaawy AM, et al. Silybum marianum total extract, silymarin and silibinin abate hepatocarcinogenesis and hepatocellular carcinoma growth via modulation of the HGF/c-Met, Wnt/β-catenin, and PI3K/Akt/mTOR signaling pathways. Biomed Pharmacother. 2022;145:112409. https://doi.org/10.1016/J.BIOPHA.2021.112409.

Article  PubMed  CAS  Google Scholar 

Mi X, Choi HS, Perumalsamy H, et al. Biosynthesis and cytotoxic effect of silymarin-functionalized selenium nanoparticles induced autophagy mediated cellular apoptosis via downregulation of PI3K/Akt/mTOR pathway in gastric cancer. Phytomedicine. 2022;99:154014.

Article  PubMed  CAS  Google Scholar 

Chen Y, Chen L, Yang T. Silymarin nanoliposomes attenuate renal injury on diabetic nephropathy rats via co-suppressing TGF-β/Smad and JAK2/STAT3/SOCS1 pathway. Life Sci. 2021;271:119197.

Article  PubMed  CAS  Google Scholar 

Bose S, Banerjee S, Mondal A, et al. Targeting the JAK/STAT signaling pathway using phytocompounds for cancer prevention and therapy. Cells. 2020;9:1451.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Verdura S, Cuyàs E, Llorach-Parés L, et al. Silibinin is a direct inhibitor of STAT3. Food Chem Toxicol. 2018;116:161–72.

Article  PubMed  CAS  Google Scholar 

Tyagi A, Singh RP, Ramasamy K, et al. Growth inhibition and regression of lung tumors by silibinin: modulation of angiogenesis by macrophage-associated cytokines and nuclear factor-kappaB and signal transducers and activators of transcription 3. Cancer Prev Res. 2009;2:74–83. https://doi.org/10.1158/1940-6207.CAPR-08-0095.

Article  CAS  Google Scholar 

Shi Z, Zhou Q, Gao S, et al. Silibinin inhibits endometrial carcinoma via blocking pathways of STAT3 activation and SREBP1-mediated lipid accumulation. Life Sci. 2019;217:70–80.

Article  PubMed  CAS  Google Scholar 

Mao J, Yang H, Cui T, et al. Combined treatment with sorafenib and silibinin synergistically targets both HCC cells and cancer stem cells by enhanced inhibition of the phosphorylation of STAT3/ERK/AKT. Eur J Pharmacol. 2018;832:39–49.

Article  PubMed  CAS  Google Scholar 

Kim S, Jeon M, Lee J, et al. Induction of fibronectin in response to epidermal growth factor is suppressed by silibinin through the inhibition of STAT3 in triple negative breast cancer cells. Oncol Rep. 2014;32:2230–6.

留言 (0)

沒有登入
gif