Sedeta ET, Jobre B, Avezbakiyev B. Breast cancer: Global patterns of incidence, mortality, and trends. 2023; 41(16_suppl):10528
Trabulsi NH, Shabkah AA, Ujaimi R, Iskanderani O, Kadi MS, Aljabri N, et al. Locally advanced breast cancer: treatment patterns and predictors of survival in a saudi tertiary center. Cureus. 2021;13(6):e15526.
PubMed PubMed Central Google Scholar
Dhanushkodi M, Sridevi V, Shanta V, Rama R, Swaminathan R, Selvaluxmy G, et al. Locally advanced breast cancer (LABC): real-world outcome of patients from cancer institute. Chennai JCO Glob Oncol. 2021;7:767–81.
Aebi S, Karlsson P, Wapnir IL. Locally advanced breast cancer. Breast (Edinburgh, Scotland). 2022;62 Suppl 1(Suppl 1):S58-s62.
Costa R, Hansen N, Gradishar WJ. 63 - Locally Advanced Breast Cancer. In: Bland KI, Copeland EM, Klimberg VS, Gradishar WJ, editors. The Breast (Fifth Edition): Elsevier; 2018. p. 819–31.e6.
Antonini M, Mattar A, Bauk Richter FG, Pannain GD, Teixeira MD, Amorim AG, et al. Real-world evidence of neoadjuvant chemotherapy for breast cancer treatment in a Brazilian multicenter cohort: correlation of pathological complete response with overall survival. The Breast. 2023;72:103577.
Article PubMed PubMed Central Google Scholar
Choudhary P, Gogia A, Deo S, Mathur S, Sharma D. Neoadjuvant chemotherapy in locally advanced breast cancer: Clinicopathological characteristics and correlation with pathological complete response. 2020;38(15_suppl):e12658-e.
Conti M, Morciano F, Bufi E, D’Angelo A, Panico C, Di Paola V, et al. Surgical planning after neoadjuvant treatment in breast cancer: a multimodality imaging-based approach focused on MRI. Cancers. 2023;15(5):96.
Reinisch M, von Minckwitz G, Harbeck N, Janni W, Kümmel S, Kaufmann M, et al. Side effects of standard adjuvant and neoadjuvant chemotherapy regimens according to age groups in primary breast cancer. Breast Care (Basel, Switzerland). 2013;8(1):60–6.
Tan AR, Im SA, Mattar A, Colomer R, Stroyakovskii D, Nowecki Z, et al. Fixed-dose combination of pertuzumab and trastuzumab for subcutaneous injection plus chemotherapy in HER2-positive early breast cancer (FeDeriCa): a randomised, open-label, multicentre, non-inferiority, phase 3 study. Lancet Oncol. 2021;22(1):85–97.
Article CAS PubMed Google Scholar
Antolin S, García-Caballero L, Reboredo C, Diaz AM, Mosquera J, Vázquez-Boquete A, et al. Correlation between HER2 amplification level and response to neoadjuvant treatment with trastuzumab and chemotherapy in HER2 positive breast cancer. 2020;38(15_suppl):e12641-e.
Bilici A, Olmez OF, Sezer A, Oksuzoglu B, Kaplan MA, Karadurmus N, et al. Real-life analysis of pathologic complete response with neoadjuvant trastuzumab plus taxane with or without pertuzumab therapy in HER2 positive locally-advanced breast cancer (HER2PATH Study). 2022;40(16_suppl):e12610-e.
Wang X, Hao X, Yan J, Xu J, Hu D, Ji F, et al. Urine biomarkers discovery by metabolomics and machine learning for Parkinson’s disease diagnoses. Chin Chem Lett. 2023;34(10):108230.
Gu Y-H, Chen Y, Li Q, Xie N-B, Xing X, Xiong J, et al. Metabolome profiling by widely-targeted metabolomics and biomarker panel selection using machine-learning for patients in different stages of chronic kidney disease. Chin Chem Lett. 2024;35(11):109627.
Tan J, Le A. The heterogeneity of breast cancer metabolism. Adv Exp Med Biol. 2021;1311:89–101.
Article CAS PubMed PubMed Central Google Scholar
Coronel-Hernández J, Pérez-Yépez EA, Delgado-Waldo I, Contreras-Romero C, Jacobo-Herrera N, Cantú-De León D, et al. Aberrant metabolism as inductor of epigenetic changes in breast cancer: therapeutic opportunities. Front Oncol. 2021;11:676562.
Article PubMed PubMed Central Google Scholar
Zheng X, Ma H, Wang J, Huang M, Fu D, Qin L, et al. Energy metabolism pathways in breast cancer progression: the reprogramming, crosstalk, and potential therapeutic targets. Transl Oncol. 2022;26:101534.
Article CAS PubMed PubMed Central Google Scholar
Lyon DE, Yao Y, Garrett T, Kelly DL, Cousin L, Archer KJ. Comparison of serum metabolomics in women with breast Cancer Prior to Chemotherapy and at 1 year: cardiometabolic implications. BMC Womens Health. 2023;23(1):221.
Article CAS PubMed PubMed Central Google Scholar
Peterson AL, Walker AK, Sloan EK, Creek DJ. Optimized method for untargeted metabolomics analysis of MDA-MB-231 breast cancer. Cells. 2016;6(4):30.
Maria RM, Altei WF, Selistre-de-Araujo HS, Colnago LA. Impact of chemotherapy on metabolic reprogramming: characterization of the metabolic profile of breast cancer MDA-MB-231 cells using 1H HR-MAS NMR spectroscopy. J Pharm Biomed Anal. 2017;146:324–8.
Article CAS PubMed Google Scholar
Cardoso MR, Santos JC, Ribeiro ML, Talarico MCR, Viana LR, Derchain SFM. A metabolomic approach to predict breast cancer behavior and chemotherapy response. Int J Mol Sci. 2018;19(2):963.
Cardoso MR, Silva AAR, Talarico MCR, Sanches PHG, Sforça ML, Rocco SA, et al. Metabolomics by NMR combined with machine learning to predict neoadjuvant chemotherapy response for breast cancer. Cancers. 2022;14(20):62.
Ogston KN, Miller ID, Payne S, Hutcheon AW, Sarkar TK, Smith I, et al. A new histological grading system to assess response of breast cancers to primary chemotherapy: prognostic significance and survival. Breast (Edinburgh, Scotland). 2003;12(5):320–7.
Zhu Q, Ademuyiwa FO, Young C, Appleton C, Covington MF, Ma C, et al. Early assessment window for predicting breast cancer neoadjuvant therapy using biomarkers, ultrasound, and diffuse optical tomography. Breast Cancer Res Treat. 2021;188(3):615–30.
Article CAS PubMed PubMed Central Google Scholar
Díaz C, González-Olmedo C, Díaz-Beltrán L, Camacho J, Mena García P, Martín-Blázquez A, et al. Predicting dynamic response to neoadjuvant chemotherapy in breast cancer: a novel metabolomics approach. Mol Oncol. 2022;16(14):2658–71.
Article PubMed PubMed Central Google Scholar
Benton HP, Ivanisevic J, Mahieu NG, Kurczy ME, Johnson CH, Franco L, et al. Autonomous metabolomics for rapid metabolite identification in global profiling. Anal Chem. 2015;87(2):884–91.
Article CAS PubMed Google Scholar
Shen X, Wang R, Xiong X, Yin Y, Cai Y, Ma Z, et al. Metabolic reaction network-based recursive metabolite annotation for untargeted metabolomics. Nat Commun. 2019;10(1):1516.
Article PubMed PubMed Central Google Scholar
Zhou Z, Luo M, Zhang H, Yin Y, Cai Y, Zhu ZJ. Metabolite annotation from knowns to unknowns through knowledge-guided multi-layer metabolic networking. Nat Commun. 2022;13(1):6656.
Article CAS PubMed PubMed Central Google Scholar
Chambers MC, Maclean B, Burke R, Amodei D, Ruderman DL, Neumann S, et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol. 2012;30(10):918–20.
Article CAS PubMed PubMed Central Google Scholar
Tsugawa H, Cajka T, Kind T, Ma Y, Higgins B, Ikeda K, et al. MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat Methods. 2015;12(6):523–6.
Article CAS PubMed PubMed Central Google Scholar
Altman NS. An introduction to Kernel and nearest-neighbor nonparametric regression. Am Stat. 1992;46(3):175–85.
Fiehn O, Robertson D, Griffin J, van der Werf M, Nikolau B, Morrison N, et al. The metabolomics standards initiative (MSI). Metabolomics. 2007;3(3):175–8.
R Core Team R. R: A language and environment for statistical computing. 2013.
Pang Z, Chong J, Zhou G, de Lima Morais DA, Chang L, Barrette M, et al. MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 2021;49(W1):W388–96.
Article CAS PubMed PubMed Central Google Scholar
Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M. Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res. 2014;42:D199-205.
Article CAS PubMed Google Scholar
Zou HJJotASA. The adaptive lasso and its oracle properties. 2006;101:1418 - 29.
Wang D, Li D, Zhang Y, Chen J, Zhang Y, Liao C, et al. Functional metabolomics reveal the role of AHR/GPR35 mediated kynurenic acid gradient sensing in chemotherapy-induced intestinal damage. Acta Pharm Sinica B. 2021;11(3):763–80.
Sadik A, Somarribas Patterson LF, Öztürk S, Mohapatra SR, Panitz V, Secker PF, et al. IL4I1 Is a metabolic immune checkpoint that activates the AHR and promotes tumor progression. Cell. 2020;182(5):1252-70.e34.
留言 (0)