Serum metabolomic profiling for predicting therapeutic response and toxicity in breast cancer neoadjuvant chemotherapy: a retrospective longitudinal study

Sedeta ET, Jobre B, Avezbakiyev B. Breast cancer: Global patterns of incidence, mortality, and trends. 2023; 41(16_suppl):10528

Trabulsi NH, Shabkah AA, Ujaimi R, Iskanderani O, Kadi MS, Aljabri N, et al. Locally advanced breast cancer: treatment patterns and predictors of survival in a saudi tertiary center. Cureus. 2021;13(6):e15526.

PubMed  PubMed Central  Google Scholar 

Dhanushkodi M, Sridevi V, Shanta V, Rama R, Swaminathan R, Selvaluxmy G, et al. Locally advanced breast cancer (LABC): real-world outcome of patients from cancer institute. Chennai JCO Glob Oncol. 2021;7:767–81.

Article  PubMed  Google Scholar 

Aebi S, Karlsson P, Wapnir IL. Locally advanced breast cancer. Breast (Edinburgh, Scotland). 2022;62 Suppl 1(Suppl 1):S58-s62.

Costa R, Hansen N, Gradishar WJ. 63 - Locally Advanced Breast Cancer. In: Bland KI, Copeland EM, Klimberg VS, Gradishar WJ, editors. The Breast (Fifth Edition): Elsevier; 2018. p. 819–31.e6.

Antonini M, Mattar A, Bauk Richter FG, Pannain GD, Teixeira MD, Amorim AG, et al. Real-world evidence of neoadjuvant chemotherapy for breast cancer treatment in a Brazilian multicenter cohort: correlation of pathological complete response with overall survival. The Breast. 2023;72:103577.

Article  PubMed  PubMed Central  Google Scholar 

Choudhary P, Gogia A, Deo S, Mathur S, Sharma D. Neoadjuvant chemotherapy in locally advanced breast cancer: Clinicopathological characteristics and correlation with pathological complete response. 2020;38(15_suppl):e12658-e.

Conti M, Morciano F, Bufi E, D’Angelo A, Panico C, Di Paola V, et al. Surgical planning after neoadjuvant treatment in breast cancer: a multimodality imaging-based approach focused on MRI. Cancers. 2023;15(5):96.

Article  Google Scholar 

Reinisch M, von Minckwitz G, Harbeck N, Janni W, Kümmel S, Kaufmann M, et al. Side effects of standard adjuvant and neoadjuvant chemotherapy regimens according to age groups in primary breast cancer. Breast Care (Basel, Switzerland). 2013;8(1):60–6.

Article  PubMed  Google Scholar 

Tan AR, Im SA, Mattar A, Colomer R, Stroyakovskii D, Nowecki Z, et al. Fixed-dose combination of pertuzumab and trastuzumab for subcutaneous injection plus chemotherapy in HER2-positive early breast cancer (FeDeriCa): a randomised, open-label, multicentre, non-inferiority, phase 3 study. Lancet Oncol. 2021;22(1):85–97.

Article  CAS  PubMed  Google Scholar 

Antolin S, García-Caballero L, Reboredo C, Diaz AM, Mosquera J, Vázquez-Boquete A, et al. Correlation between HER2 amplification level and response to neoadjuvant treatment with trastuzumab and chemotherapy in HER2 positive breast cancer. 2020;38(15_suppl):e12641-e.

Bilici A, Olmez OF, Sezer A, Oksuzoglu B, Kaplan MA, Karadurmus N, et al. Real-life analysis of pathologic complete response with neoadjuvant trastuzumab plus taxane with or without pertuzumab therapy in HER2 positive locally-advanced breast cancer (HER2PATH Study). 2022;40(16_suppl):e12610-e.

Wang X, Hao X, Yan J, Xu J, Hu D, Ji F, et al. Urine biomarkers discovery by metabolomics and machine learning for Parkinson’s disease diagnoses. Chin Chem Lett. 2023;34(10):108230.

Article  CAS  Google Scholar 

Gu Y-H, Chen Y, Li Q, Xie N-B, Xing X, Xiong J, et al. Metabolome profiling by widely-targeted metabolomics and biomarker panel selection using machine-learning for patients in different stages of chronic kidney disease. Chin Chem Lett. 2024;35(11):109627.

Article  CAS  Google Scholar 

Tan J, Le A. The heterogeneity of breast cancer metabolism. Adv Exp Med Biol. 2021;1311:89–101.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Coronel-Hernández J, Pérez-Yépez EA, Delgado-Waldo I, Contreras-Romero C, Jacobo-Herrera N, Cantú-De León D, et al. Aberrant metabolism as inductor of epigenetic changes in breast cancer: therapeutic opportunities. Front Oncol. 2021;11:676562.

Article  PubMed  PubMed Central  Google Scholar 

Zheng X, Ma H, Wang J, Huang M, Fu D, Qin L, et al. Energy metabolism pathways in breast cancer progression: the reprogramming, crosstalk, and potential therapeutic targets. Transl Oncol. 2022;26:101534.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lyon DE, Yao Y, Garrett T, Kelly DL, Cousin L, Archer KJ. Comparison of serum metabolomics in women with breast Cancer Prior to Chemotherapy and at 1 year: cardiometabolic implications. BMC Womens Health. 2023;23(1):221.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peterson AL, Walker AK, Sloan EK, Creek DJ. Optimized method for untargeted metabolomics analysis of MDA-MB-231 breast cancer. Cells. 2016;6(4):30.

Google Scholar 

Maria RM, Altei WF, Selistre-de-Araujo HS, Colnago LA. Impact of chemotherapy on metabolic reprogramming: characterization of the metabolic profile of breast cancer MDA-MB-231 cells using 1H HR-MAS NMR spectroscopy. J Pharm Biomed Anal. 2017;146:324–8.

Article  CAS  PubMed  Google Scholar 

Cardoso MR, Santos JC, Ribeiro ML, Talarico MCR, Viana LR, Derchain SFM. A metabolomic approach to predict breast cancer behavior and chemotherapy response. Int J Mol Sci. 2018;19(2):963.

Article  Google Scholar 

Cardoso MR, Silva AAR, Talarico MCR, Sanches PHG, Sforça ML, Rocco SA, et al. Metabolomics by NMR combined with machine learning to predict neoadjuvant chemotherapy response for breast cancer. Cancers. 2022;14(20):62.

Article  Google Scholar 

Ogston KN, Miller ID, Payne S, Hutcheon AW, Sarkar TK, Smith I, et al. A new histological grading system to assess response of breast cancers to primary chemotherapy: prognostic significance and survival. Breast (Edinburgh, Scotland). 2003;12(5):320–7.

Article  PubMed  Google Scholar 

Zhu Q, Ademuyiwa FO, Young C, Appleton C, Covington MF, Ma C, et al. Early assessment window for predicting breast cancer neoadjuvant therapy using biomarkers, ultrasound, and diffuse optical tomography. Breast Cancer Res Treat. 2021;188(3):615–30.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Díaz C, González-Olmedo C, Díaz-Beltrán L, Camacho J, Mena García P, Martín-Blázquez A, et al. Predicting dynamic response to neoadjuvant chemotherapy in breast cancer: a novel metabolomics approach. Mol Oncol. 2022;16(14):2658–71.

Article  PubMed  PubMed Central  Google Scholar 

Benton HP, Ivanisevic J, Mahieu NG, Kurczy ME, Johnson CH, Franco L, et al. Autonomous metabolomics for rapid metabolite identification in global profiling. Anal Chem. 2015;87(2):884–91.

Article  CAS  PubMed  Google Scholar 

Shen X, Wang R, Xiong X, Yin Y, Cai Y, Ma Z, et al. Metabolic reaction network-based recursive metabolite annotation for untargeted metabolomics. Nat Commun. 2019;10(1):1516.

Article  PubMed  PubMed Central  Google Scholar 

Zhou Z, Luo M, Zhang H, Yin Y, Cai Y, Zhu ZJ. Metabolite annotation from knowns to unknowns through knowledge-guided multi-layer metabolic networking. Nat Commun. 2022;13(1):6656.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chambers MC, Maclean B, Burke R, Amodei D, Ruderman DL, Neumann S, et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol. 2012;30(10):918–20.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tsugawa H, Cajka T, Kind T, Ma Y, Higgins B, Ikeda K, et al. MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat Methods. 2015;12(6):523–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Altman NS. An introduction to Kernel and nearest-neighbor nonparametric regression. Am Stat. 1992;46(3):175–85.

Article  Google Scholar 

Fiehn O, Robertson D, Griffin J, van der Werf M, Nikolau B, Morrison N, et al. The metabolomics standards initiative (MSI). Metabolomics. 2007;3(3):175–8.

Article  CAS  Google Scholar 

R Core Team R. R: A language and environment for statistical computing. 2013.

Pang Z, Chong J, Zhou G, de Lima Morais DA, Chang L, Barrette M, et al. MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 2021;49(W1):W388–96.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M. Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res. 2014;42:D199-205.

Article  CAS  PubMed  Google Scholar 

Zou HJJotASA. The adaptive lasso and its oracle properties. 2006;101:1418 - 29.

Wang D, Li D, Zhang Y, Chen J, Zhang Y, Liao C, et al. Functional metabolomics reveal the role of AHR/GPR35 mediated kynurenic acid gradient sensing in chemotherapy-induced intestinal damage. Acta Pharm Sinica B. 2021;11(3):763–80.

Article  Google Scholar 

Sadik A, Somarribas Patterson LF, Öztürk S, Mohapatra SR, Panitz V, Secker PF, et al. IL4I1 Is a metabolic immune checkpoint that activates the AHR and promotes tumor progression. Cell. 2020;182(5):1252-70.e34.

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif