Cryptoic acids A and B, benzene-containing polyketides, and cyclocryptamide, a modified diketopiperazine, from an actinomycete of the genus Cryptosporangium

Atanasov AG, Zotchev SB, Dirsch VM. Natural products in drug discovery: advances and opportunities. Nat Rev Drug Discov. 2021;20:200–16.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod. 2020;83:770–803.

Article  CAS  PubMed  Google Scholar 

Simeis DD, Serra S. Actinomycetes: a never-ending source of bioactive compounds-an overview on antibiotics production. Antibiotics. 2021;10:483.

Article  PubMed  PubMed Central  Google Scholar 

Hoshino S, et al. Niizalactams A–C, multicyclic macrolactams isolated from combined culture of Streptomyces with mycolic acid-containing bacterium. J Nat Prod. 2015;78:3011–7.

Article  CAS  PubMed  Google Scholar 

Matsui N, et al. Activation of cryptic milbemycin A4 production in Streptomyces sp. BB47 by the introduction of a functional bldA gene. J Gen Appl Microbiol. 2021;67:240–7.

Article  CAS  PubMed  Google Scholar 

Saito S, et al. Dihydromaniwamycin E, a heat-shock metabolite from thermotolerant Streptomyces sp. JA74, exhibiting antiviral activity against influenza and SARS-CoV-2 viruses. J Nat Prod. 2022;85:2583–91.

Article  CAS  PubMed  Google Scholar 

Elsbaey M, Oku N, Abdel-Mottaleb MSA, Igarashi Y. Allostreptopyrroles A–E, β-alkylpyrrole derivatives from an actinomycete Allostreptomyces sp. RD068384. Beilstein J Org Chem. 2024;20:1981–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu C, et al. Isolation and structure determination of allopteridic acids A–C and allokutzmicin from an unexplored actinomycete of the genus Allokutzneria. J Antibiot. 2023;76:305–15.

Article  CAS  Google Scholar 

Liu C, et al. Catellatolactams A–C, plant growth-promoting ansamacrolactams from a rare actinomycete of the genus Catellatospora. J Nat Prod. 2022;85:1993–9.

Article  CAS  PubMed  Google Scholar 

Lu S, et al. Krasilnikolides A and B and detalosylkrasilnikolide A, cytotoxic 20-membered macrolides from the genus Krasilnikovia: assignment of anomeric configuration by J-based configuration analysis. J Nat Prod. 2022;85:2796–803.

Article  CAS  PubMed  Google Scholar 

Saito S, et al. Phytohabitols A–C, δ-lactone-terminated polyketides from an actinomycete of the genus Phytohabitans. J Nat Prod. 2022;8:1697–703.

Article  Google Scholar 

Saito S, et al. A cyclopeptide and three oligomycin-class polyketides produced by an underexplored actinomycete of the genus Pseudosporangium. Beilstein J Org Chem. 2020;16:1100–10.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tamura T, Hayakawa M, Hatano K. A new genus of the order Actinomycetales, Cryptosporangium gen. nov., with descriptions of Cryptosporangium arvum sp. nov. and Cryptosporangium japonicum sp. nov. Int J Syst Bacteriol. 1998;48:995–05.

Article  CAS  PubMed  Google Scholar 

The bacterio.net project. https://lpsn.dsmz.de/genus/Cryptosporangium. Accessed 02 Sep 2024.

AntiSMASH. The AntiSMASH project. https://antismash.secondarymetabolites.org. Accessed 02 Sep 2024.

Triningsih DW, Yoshizaki N, Igarashi Y. Wychimicins E and F from a rare actinomycete of the genus Cryptosporangium. J Antibiot. 2024;77:847–851.

Igarashi Y, Ikeda M, Miyanaga S, Kasai H, Shizuri Y, Matsuura N. Two butenolides with PPARα agonistic activity from a marine-derived Streptomyces. J Antibiot. 2015;68:345–7.

Article  CAS  Google Scholar 

Kim Y, et al. Nocapyrones: α- and γ-pyrones from a marine-derived Nocardiopsis sp. Mar Drugs. 2014;12:4110–25.

Article  PubMed  PubMed Central  Google Scholar 

Xu Y, et al. Genome mining of cinnamoyl-containing nonribosomal peptide gene clusters directs the production of malacinnamycin. Org Lett. 2024;26:971–6.

Article  CAS  PubMed  Google Scholar 

Saksena AK, et al. Structure elucidation of Sch 49088, a novel everninomicin antibiotic containing an unusual hydroxylamine-ether sugar, everhydroxylaminose. Tetrahedron Lett. 1998;39:8441–4.

Article  CAS  Google Scholar 

Ohlendorf B, et al. Diacidene, a polyene dicarboxylic acid from a Micromonospora isolate from the German Wadden Sea. Z Naturforsch C. 2012;67:445–50.

Article  CAS  PubMed  Google Scholar 

Burres NS, et al. Simple aromatics identified with a NFAT-lacZ transcription assay for the detection of immunosuppressants. J Antibiot. 1995;48:380–6.

Article  CAS  Google Scholar 

Lacey H, Chen R, Vuong D. Yeppoonic acids A–D: 1,2,4-trisubstituted arene carboxylic acid co-metabolites of conglobatin from an Australian Streptomyces sp. J Antibiot. 2022;75:108–12.

Article  CAS  Google Scholar 

Zhou T, Komaki H, Ichikawa N, Hosoyama A, Sato S, Igarashi Y. Biosynthesis of akaeolide and lorneic acids and annotation of type I polyketide synthase gene clusters in the genome of Streptomyces sp. NPS554. Mar Drugs. 2015;13:581–96.

Article  PubMed  PubMed Central  Google Scholar 

Yang YM, et al. Cytochrome P450 catalyzes benzene ring formation in the biosynthesis of trialkyl-substituted aromatic polyketides. Angew Chem Int Ed Engl. 2023;62:1–7.

Google Scholar 

Deng Z, et al. An unusual type II polyketide synthase system involved in cinnamoyl lipid biosynthesis. Angew Chem Int Ed. 2021;60:153–8.

Article  CAS  Google Scholar 

Zhang J, et al. Reconstitution of a highly reducing Type II PKS system reveals 6π-electrocyclization is required for o-dialkylbenzene biosynthesis. J Am Chem Soc. 2021;143:2962–9.

Article  CAS  PubMed  Google Scholar 

Shi J, et al. In Vitro reconstitution of cinnamoyl moiety reveals two distinct cyclases for benzene ring formation. J Am Chem Soc. 2022;144:7939–48.

Article  CAS  PubMed  Google Scholar 

Zhou W, Alharbi HA, Hummingbird E, Keatinge-Clay AT, Mahmud T. Functional studies and revision of the NFAT-133/TM-123 biosynthetic pathway in Streptomyces pactum. ACS Chem Biol. 2022;17:2039–45.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Deng Z, et al. A versatile thioesterase involved in dimerization during cinnamoyl lipid biosynthesis. Angew Chem Int Ed. 2024;63:e202402010.

Article  CAS  Google Scholar 

Song MM, et al. Diketopiperazine and enterotoxin analogues from the mangrove derived-soil Streptomyces sp. SCSIO 41400 and their biological evaluation. Nat Prod Res. 2022;36:1197–04.

Article  CAS  PubMed  Google Scholar 

Ye G, Huang C, Li J, Chen T, Tang J, Liu W, Long Y. Isolation, structural characterization and antidiabetic activity of new diketopiperazine alkaloids from mangrove endophytic fungus Aspergillus sp. 16-5c. Mar Drugs. 2021;19:402.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bushman TJ, Cunneely Q, Ciesla L. Chapter 3—extraction, isolation, and biological activity of natural cyclic dipeptides. Stud Nat Prod Chem. 2023;78:75–99.

Article  Google Scholar 

Pérez-Picaso L, Rios MY, Hernández AN, Martínez J. 1H and 13Cassignments of cyclo [N-(Lys-Phe)-Orn-Val], a semicyclic imidetetrapeptide from Burkholderia cepacia. Mag Reson Chem. 2006;44:959–61.

Article  Google Scholar 

Zuo L, et al. Hangtaimycin, a peptide secondary metabolite discovered from Streptomyces spectabilis CPCC 200148 by chemical screening. J Antibiot. 2016;69:835–8.

Article  CAS  Google Scholar 

Liu Z, Chen Y, Li S, Hu C, Liu H, Zhang W. Indole diketopiperazine alkaloids from the deep-sea-derived fungus Aspergillus sp. FS445. Nat Prod Res. 2021;36:5213–21.

Article 

留言 (0)

沒有登入
gif