Atanasov AG, Zotchev SB, Dirsch VM. Natural products in drug discovery: advances and opportunities. Nat Rev Drug Discov. 2021;20:200–16.
Article CAS PubMed PubMed Central Google Scholar
Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod. 2020;83:770–803.
Article CAS PubMed Google Scholar
Simeis DD, Serra S. Actinomycetes: a never-ending source of bioactive compounds-an overview on antibiotics production. Antibiotics. 2021;10:483.
Article PubMed PubMed Central Google Scholar
Hoshino S, et al. Niizalactams A–C, multicyclic macrolactams isolated from combined culture of Streptomyces with mycolic acid-containing bacterium. J Nat Prod. 2015;78:3011–7.
Article CAS PubMed Google Scholar
Matsui N, et al. Activation of cryptic milbemycin A4 production in Streptomyces sp. BB47 by the introduction of a functional bldA gene. J Gen Appl Microbiol. 2021;67:240–7.
Article CAS PubMed Google Scholar
Saito S, et al. Dihydromaniwamycin E, a heat-shock metabolite from thermotolerant Streptomyces sp. JA74, exhibiting antiviral activity against influenza and SARS-CoV-2 viruses. J Nat Prod. 2022;85:2583–91.
Article CAS PubMed Google Scholar
Elsbaey M, Oku N, Abdel-Mottaleb MSA, Igarashi Y. Allostreptopyrroles A–E, β-alkylpyrrole derivatives from an actinomycete Allostreptomyces sp. RD068384. Beilstein J Org Chem. 2024;20:1981–7.
Article CAS PubMed PubMed Central Google Scholar
Liu C, et al. Isolation and structure determination of allopteridic acids A–C and allokutzmicin from an unexplored actinomycete of the genus Allokutzneria. J Antibiot. 2023;76:305–15.
Liu C, et al. Catellatolactams A–C, plant growth-promoting ansamacrolactams from a rare actinomycete of the genus Catellatospora. J Nat Prod. 2022;85:1993–9.
Article CAS PubMed Google Scholar
Lu S, et al. Krasilnikolides A and B and detalosylkrasilnikolide A, cytotoxic 20-membered macrolides from the genus Krasilnikovia: assignment of anomeric configuration by J-based configuration analysis. J Nat Prod. 2022;85:2796–803.
Article CAS PubMed Google Scholar
Saito S, et al. Phytohabitols A–C, δ-lactone-terminated polyketides from an actinomycete of the genus Phytohabitans. J Nat Prod. 2022;8:1697–703.
Saito S, et al. A cyclopeptide and three oligomycin-class polyketides produced by an underexplored actinomycete of the genus Pseudosporangium. Beilstein J Org Chem. 2020;16:1100–10.
Article CAS PubMed PubMed Central Google Scholar
Tamura T, Hayakawa M, Hatano K. A new genus of the order Actinomycetales, Cryptosporangium gen. nov., with descriptions of Cryptosporangium arvum sp. nov. and Cryptosporangium japonicum sp. nov. Int J Syst Bacteriol. 1998;48:995–05.
Article CAS PubMed Google Scholar
The bacterio.net project. https://lpsn.dsmz.de/genus/Cryptosporangium. Accessed 02 Sep 2024.
AntiSMASH. The AntiSMASH project. https://antismash.secondarymetabolites.org. Accessed 02 Sep 2024.
Triningsih DW, Yoshizaki N, Igarashi Y. Wychimicins E and F from a rare actinomycete of the genus Cryptosporangium. J Antibiot. 2024;77:847–851.
Igarashi Y, Ikeda M, Miyanaga S, Kasai H, Shizuri Y, Matsuura N. Two butenolides with PPARα agonistic activity from a marine-derived Streptomyces. J Antibiot. 2015;68:345–7.
Kim Y, et al. Nocapyrones: α- and γ-pyrones from a marine-derived Nocardiopsis sp. Mar Drugs. 2014;12:4110–25.
Article PubMed PubMed Central Google Scholar
Xu Y, et al. Genome mining of cinnamoyl-containing nonribosomal peptide gene clusters directs the production of malacinnamycin. Org Lett. 2024;26:971–6.
Article CAS PubMed Google Scholar
Saksena AK, et al. Structure elucidation of Sch 49088, a novel everninomicin antibiotic containing an unusual hydroxylamine-ether sugar, everhydroxylaminose. Tetrahedron Lett. 1998;39:8441–4.
Ohlendorf B, et al. Diacidene, a polyene dicarboxylic acid from a Micromonospora isolate from the German Wadden Sea. Z Naturforsch C. 2012;67:445–50.
Article CAS PubMed Google Scholar
Burres NS, et al. Simple aromatics identified with a NFAT-lacZ transcription assay for the detection of immunosuppressants. J Antibiot. 1995;48:380–6.
Lacey H, Chen R, Vuong D. Yeppoonic acids A–D: 1,2,4-trisubstituted arene carboxylic acid co-metabolites of conglobatin from an Australian Streptomyces sp. J Antibiot. 2022;75:108–12.
Zhou T, Komaki H, Ichikawa N, Hosoyama A, Sato S, Igarashi Y. Biosynthesis of akaeolide and lorneic acids and annotation of type I polyketide synthase gene clusters in the genome of Streptomyces sp. NPS554. Mar Drugs. 2015;13:581–96.
Article PubMed PubMed Central Google Scholar
Yang YM, et al. Cytochrome P450 catalyzes benzene ring formation in the biosynthesis of trialkyl-substituted aromatic polyketides. Angew Chem Int Ed Engl. 2023;62:1–7.
Deng Z, et al. An unusual type II polyketide synthase system involved in cinnamoyl lipid biosynthesis. Angew Chem Int Ed. 2021;60:153–8.
Zhang J, et al. Reconstitution of a highly reducing Type II PKS system reveals 6π-electrocyclization is required for o-dialkylbenzene biosynthesis. J Am Chem Soc. 2021;143:2962–9.
Article CAS PubMed Google Scholar
Shi J, et al. In Vitro reconstitution of cinnamoyl moiety reveals two distinct cyclases for benzene ring formation. J Am Chem Soc. 2022;144:7939–48.
Article CAS PubMed Google Scholar
Zhou W, Alharbi HA, Hummingbird E, Keatinge-Clay AT, Mahmud T. Functional studies and revision of the NFAT-133/TM-123 biosynthetic pathway in Streptomyces pactum. ACS Chem Biol. 2022;17:2039–45.
Article CAS PubMed PubMed Central Google Scholar
Deng Z, et al. A versatile thioesterase involved in dimerization during cinnamoyl lipid biosynthesis. Angew Chem Int Ed. 2024;63:e202402010.
Song MM, et al. Diketopiperazine and enterotoxin analogues from the mangrove derived-soil Streptomyces sp. SCSIO 41400 and their biological evaluation. Nat Prod Res. 2022;36:1197–04.
Article CAS PubMed Google Scholar
Ye G, Huang C, Li J, Chen T, Tang J, Liu W, Long Y. Isolation, structural characterization and antidiabetic activity of new diketopiperazine alkaloids from mangrove endophytic fungus Aspergillus sp. 16-5c. Mar Drugs. 2021;19:402.
Article CAS PubMed PubMed Central Google Scholar
Bushman TJ, Cunneely Q, Ciesla L. Chapter 3—extraction, isolation, and biological activity of natural cyclic dipeptides. Stud Nat Prod Chem. 2023;78:75–99.
Pérez-Picaso L, Rios MY, Hernández AN, Martínez J. 1H and 13Cassignments of cyclo [N-(Lys-Phe)-Orn-Val], a semicyclic imidetetrapeptide from Burkholderia cepacia. Mag Reson Chem. 2006;44:959–61.
Zuo L, et al. Hangtaimycin, a peptide secondary metabolite discovered from Streptomyces spectabilis CPCC 200148 by chemical screening. J Antibiot. 2016;69:835–8.
Liu Z, Chen Y, Li S, Hu C, Liu H, Zhang W. Indole diketopiperazine alkaloids from the deep-sea-derived fungus Aspergillus sp. FS445. Nat Prod Res. 2021;36:5213–21.
留言 (0)