Peng Z, et al. Update on Antimicrobial Resistance in Clostridium difficile: Resistance Mechanisms and Antimicrobial Susceptibility Testing. J Clin Microbiol. 2017;55:1998.
Article CAS PubMed PubMed Central Google Scholar
CDC, Antibiotic Resistance Threats in the United States 2019. Atlanta, GA: U.S.D.o.H.a.H. Services; 2019.
Fu Y, Luo Y, Grinspan AM. Epidemiology of community-acquired and recurrent Clostridioides difficile infection. Ther Adv Gastroenterol. 2021;14:17562848211016248.
Desai K, et al. Epidemiological and economic burden of Clostridium difficile in the United States: estimates from a modeling approach. BMC Infect Dis. 2016;16:303.
Article PubMed PubMed Central Google Scholar
Spigaglia P. Recent advances in the understanding of antibiotic resistance in Clostridium difficile infection. Therapeutic Adv Infect Dis. 2016;3:23–42.
Chow AW, Cheng N, Bartlett KH. In vitro susceptibility of Clostridium difficile to new beta-lactam and quinolone antibiotics. Antimicrob Agents Chemother. 1985;28:842–4.
Article CAS PubMed PubMed Central Google Scholar
CDC, Outpatient Antibiotic Prescriptions — United States, 2022. 2022. https://archive.cdc.gov/www_cdc_gov/antibiotic-use/data/report-2022.html.
Slimings C, Riley TV. Antibiotics and hospital-acquired Clostridium difficile infection: update of systematic review and meta-analysis. J Antimicrobial Chemother. 2013;69:881–91.
Leffler DA, Lamont JT. Clostridium difficile infection. N Engl J Med. 2015;372:1539–48.
Article CAS PubMed Google Scholar
He M, et al. Emergence and global spread of epidemic healthcare-associated Clostridium difficile. Nat Genet. 2013;45:109–13.
Article CAS PubMed Google Scholar
Tipper DJ, Strominger JL. Mechanism of action of penicillins: a proposal based on their structural similarity to acyl-D-alanyl-D-alanine. Proc Natl Acad Sci USA. 1965;54:1133–41.
Article CAS PubMed PubMed Central Google Scholar
Zapun A, Contreras-Martel C, Vernet T. Penicillin-binding proteins and β-lactam resistance. FEMS Microbiol Rev. 2008;32:361–85.
Article CAS PubMed Google Scholar
Fisher JF, Mobashery S. β-Lactam Resistance Mechanisms: Gram-Positive Bacteria and Mycobacterium tuberculosis. Cold Spring Harbor Perspect Med. 2016;6:a025221.
Blanco P, et al. Bacterial Multidrug Efflux Pumps: Much More Than Antibiotic Resistance Determinants. Microorganisms. 2016;4:14.
Article PubMed PubMed Central Google Scholar
Salerno AJ, Lampen JO. Transcriptional analysis of beta-lactamase regulation in Bacillus licheniformis. J Bacteriol. 1986;166:769–78.
Article CAS PubMed PubMed Central Google Scholar
Dumas JL, et al. Analysis of antibiotic resistance gene expression in Pseudomonas aeruginosa by quantitative real-time-PCR. FEMS Microbiol Lett. 2006;254:217–25.
Article CAS PubMed Google Scholar
Minami S, et al. Induction of beta-lactamase by various beta-lactam antibiotics in Enterobacter cloacae. Antimicrob Agents Chemother. 1980;18:382–5.
Article CAS PubMed PubMed Central Google Scholar
Dintner S, et al. Coevolution of ABC Transporters and Two-Component Regulatory Systems as Resistance Modules against Antimicrobial Peptides in Firmicute Bacteria. J Bacteriol. 2011;193:3851.
Article CAS PubMed PubMed Central Google Scholar
Meehl M, et al. Interaction of the GraRS two-component system with the VraFG ABC transporter to support vancomycin-intermediate resistance in Staphylococcus aureus. Antimicrob Agents Chemother. 2007;51:2679–89.
Article CAS PubMed PubMed Central Google Scholar
Maddux MS. Effects of beta-lactamase-mediated antimicrobial resistance: the role of beta-lactamase inhibitors. Pharmacotherapy. 1991;11:40s–50s.
Article CAS PubMed Google Scholar
Steinfels E, et al. Characterization of YvcC (BmrA), a Multidrug ABC Transporter Constitutively Expressed in Bacillus subtilis. Biochemistry. 2004;43:7491–502.
Article CAS PubMed Google Scholar
Ealand CS, Machowski EE, Kana BD. β-lactam resistance: The role of low molecular weight penicillin binding proteins, β-lactamases and ld-transpeptidases in bacteria associated with respiratory tract infections. IUBMB Life. 2018;70:855–68.
Article CAS PubMed Google Scholar
Hoyland, Christopher N, et al. Structure of the LdcB LD-Carboxypeptidase Reveals the Molecular Basis of Peptidoglycan Recognition. Structure. 2014;22:949–60.
Article CAS PubMed PubMed Central Google Scholar
Sandhu BK, et al. Regulation and Anaerobic Function of the Clostridioides difficile β-Lactamase. Antimicrobial Agents Chemother. 2019;64:e01496-19.
Toth M, et al. Intrinsic Class D β-Lactamases of Clostridium difficile. mBio. 2018;9:e01803–01818.
Article PubMed PubMed Central Google Scholar
Ammam F, et al. The functional vanGCd cluster of Clostridium difficile does not confer vancomycin resistance. Mol Microbiol. 2013;89:612–25.
Article CAS PubMed Google Scholar
Toth M, et al. Class D β-lactamases do exist in Gram-positive bacteria. Nat Chem Biol. 2016;12:9–14.
Article CAS PubMed Google Scholar
Metcalf D, Sharif S, Weese JS. Evaluation of candidate reference genes in Clostridium difficile for gene expression normalization. Anaerobe. 2010;16:439–43.
Article CAS PubMed Google Scholar
Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29:e45.
Article CAS PubMed PubMed Central Google Scholar
Gibson DG, et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods. 2009;6:343–5.
Article CAS PubMed Google Scholar
Ng YK, et al. Expanding the repertoire of gene tools for precise manipulation of the Clostridium difficile genome: allelic exchange using pyrE alleles. PLoS One. 2013;8:e56051.
Article CAS PubMed PubMed Central Google Scholar
Cartman ST, Minton NP. A mariner-based transposon system for in vivo random mutagenesis of Clostridium difficile. Appl Environ Microbiol. 2009;76:1103–1109.
Ewing B, Green P. Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res. 1998;8:186–94.
Article CAS PubMed Google Scholar
Kanehisa M, et al. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 2023;51:D587–d592.
Article CAS PubMed Google Scholar
Cañadas IC, et al. RiboCas: A Universal CRISPR-Based Editing Tool for Clostridium. ACS Synth Biol. 2019;8:1379–90.
Hartman BJ, Tomasz A. Low-affinity penicillin-binding protein associated with beta-lactam resistance in Staphylococcus aureus. J Bacteriol. 1984;158:513–6.
留言 (0)