Gorrie CL, Mirčeta M, Wick RR, Judd LM, Lam MMC, Gomi R, et al. Genomic dissection of Klebsiella pneumoniae infections in hospital patients reveals insights into an opportunistic pathogen. Nat Commun. 2022;13:3017. https://doi.org/10.1038/s41467-022-30717-6.
Article PubMed PubMed Central Google Scholar
Xanthopoulou K, Imirzalioglu C, Walker SV, Behnke M, Dinkelacker AG, Eisenbeis S, et al. Surveillance and genomic analysis of third-generation Cephalosporin-Resistant and Carbapenem-Resistant Klebsiella pneumoniae complex in Germany. Antibiotics. 2022;11:1286. https://doi.org/10.3390/antibiotics11101286
Article PubMed PubMed Central CAS Google Scholar
Dong N, Yang X, Chan EW-C, Zhang R, Chen S. Klebsiella species: Taxonomy, hypervirulence and multidrug resistance. EBioMedicine. 2022;79:103998. https://doi.org/10.1016/j.ebiom.2022.103998
Article PubMed PubMed Central CAS Google Scholar
Long SW, Linson SE, Ojeda Saavedra M, Cantu C, Davis JJ, Brettin T, et al. Whole-genome sequencing of human clinical Klebsiella pneumoniae isolates reveals misidentification and misunderstandings of Klebsiella pneumoniae, Klebsiella variicola, and Klebsiella quasipneumoniae. mSphere. 2017;2:e00290-17. https://doi.org/10.1128/mSphereDirect.00290-17
Article PubMed PubMed Central Google Scholar
Rodrigues C, Passet V, Rakotondrasoa A, Brisse S. Identification of Klebsiella pneumoniae, Klebsiella quasipneumoniae, Klebsiella variicola and related Phylogroups by MALDI-TOF Mass Spectrometry. Front Microbiol. 2018;9:3000. https://doi.org/10.3389/fmicb.2018.03000
Article PubMed PubMed Central Google Scholar
New antibiotic to fight infections caused by multidrug-resistant bacteria | European Medicines Agency n.d. https://www.ema.europa.eu/en/news/new-antibiotic-fight-infections-caused-multidrug-resistant-bacteria (accessed April 25, 2024).
Surveillance Atlas of Infectious Diseases n.d. https://atlas.ecdc.europa.eu/public/index.aspx (accessed March 25, 2024).
Wang DY, Abboud MI, Markoulides MS, Brem J, Schofield CJ. The road to avibactam: the first clinically useful non-β-lactam working somewhat like a β-lactam. Future Med Chem. 2016;8:1063–84. https://doi.org/10.4155/fmc-2016-0078
Article PubMed CAS Google Scholar
Ramsey C, MacGowan AP. A review of the pharmacokinetics and pharmacodynamics of aztreonam. J Antimicrob Chemother. 2016;71:2704–12. https://doi.org/10.1093/jac/dkw231
Article PubMed CAS Google Scholar
Camargo CH, Yamada AY, de Souza AR, Reis AD, Santos MBN, de Assis DB, et al. Genomic diversity of NDM-producing Klebsiella species from Brazil, 2013–2022. Antibiotics. 2022;11:1395. https://doi.org/10.3390/antibiotics11101395
Article PubMed PubMed Central CAS Google Scholar
Hatrongjit R, Chopjitt P, Boueroy P, Kerdsin A. Multiplex PCR detection of common Carbapenemase genes and identification of clinically relevant Escherichia coli and Klebsiella pneumoniae Complex. Antibiotics. 2023;12:76. https://doi.org/10.3390/antibiotics12010076
Data from the ECDC Surveillance Atlas - Antimicrobial resistance 2017. https://www.ecdc.europa.eu/en/antimicrobial-resistance/surveillance-and-disease-data/data-ecdc (accessed May 6, 2023).
Magiorakos A-P, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18:268–81. https://doi.org/10.1111/j.1469-0691.2011.03570.x
Article PubMed CAS Google Scholar
Emilie CM, Alice CM, Marine G, Farfour E, Pourbaix A, Dortet L, et al. Evaluation of the MTSTM aztreonam-avibactam strip (Liofilchem) on New Delhi metallo-β-lactamase-producing Enterobacterales. Eur J Clin Microbiol Infect Dis. 2024;43:777–84. https://doi.org/10.1007/s10096-024-04766-2
Article PubMed CAS Google Scholar
Huang Y-S, Chen P-Y, Chou P-C, Wang J-T. In vitro activities and inoculum effects of Cefiderocol and Aztreonam-Avibactam against Metallo-β-Lactamase-producing Enterobacteriaceae. Microbiol Spectr n.d.;11:e00569-23. https://doi.org/10.1128/spectrum.00569-23.
Vasoo S, Cunningham SA, Cole NC, Kohner PC, Menon SR, Krause KM, et al. In vitro activities of Ceftazidime-Avibactam, Aztreonam-Avibactam, and a panel of older and contemporary antimicrobial agents against Carbapenemase-producing gram-negative Bacilli. Antimicrob Agents Chemother. 2015;59:7842–6. https://doi.org/10.1128/AAC.02019-15
Article PubMed PubMed Central CAS Google Scholar
Wise MG, Karlowsky JA, Mohamed N, Kamat S, Sahm DF. In vitro activity of aztreonam-avibactam against Enterobacterales isolates collected in Latin America, Africa/Middle East, Asia, and Eurasia for the ATLAS Global Surveillance Program in 2019-2021. Eur J Clin Microbiol Infect Dis. 2023;42:1135–43. https://doi.org/10.1007/s10096-023-04645-2
Article PubMed PubMed Central CAS Google Scholar
Sader HS, Castanheira M, Kimbrough JH, Kantro V, Mendes RE. Aztreonam/avibactam activity against a large collection of carbapenem-resistant Enterobacterales (CRE) collected in hospitals from Europe, Asia and Latin America (2019-21). JAC Antimicrob Resist. 2023;5:dlad032. https://doi.org/10.1093/jacamr/dlad032
Article PubMed PubMed Central Google Scholar
Sader HS, Carvalhaes CG, Arends SJR, Castanheira M, Mendes RE. Aztreonam/avibactam activity against clinical isolates of Enterobacterales collected in Europe, Asia and Latin America in 2019. J Antimicrob Chemother. 2021;76:659–66. https://doi.org/10.1093/jac/dkaa504
Article PubMed CAS Google Scholar
Piérard D, Hermsen ED, Kantecki M, Arhin FF. Antimicrobial activities of Aztreonam-Avibactam and comparator agents against Enterobacterales analyzed by ICU and non-ICU wards, infection sources, and geographic regions: ATLAS Program 2016-2020. Antibiotics. 2023;12:1591. https://doi.org/10.3390/antibiotics12111591
Article PubMed PubMed Central CAS Google Scholar
Chen J, Liu Y, Jia W, Xu X, Sun G, Wang T, et al. In vitro activities of Aztreonam-Avibactam, Eravacycline, Cefoselis, and other comparators against clinical Enterobacterales Isolates: a Multicenter Study in China, 2019. Microbiology Spectrum. 2023;11:e04873-22. https://doi.org/10.1128/spectrum.04873-22
Article PubMed PubMed Central CAS Google Scholar
Li D, Yu H, Huang X, Long S, Zhang J. In vitro activity of ceftazidime-avibactam, imipenem-relebactam, aztreonam-avibactam, and comparators toward carbapenem-resistant and hypervirulent Klebsiella pneumoniae isolates. Microbiol Spectr. 2023;11:e0280623. https://doi.org/10.1128/spectrum.02806-23
Article PubMed CAS Google Scholar
Rossolini GM, Stone G, Kantecki M, Arhin FF. In vitro activity of aztreonam/avibactam against isolates of Enterobacterales collected globally from ATLAS in 2019. J Glob Antimicrob Resist. 2022;30:214–21. https://doi.org/10.1016/j.jgar.2022.06.018
Article PubMed CAS Google Scholar
Ageevets V, Sulian O, Avdeeva A, Chulkova P, Ageevets I, Gostev V, et al. Minimum inhibitory concentrations of aztreonam–avibactam, ceftazidime–avibactam and meropenem in clinical isolates of Klebsiella pneumoniae harboring carbapenemase genes. J Antibiot 2024:1–5. https://doi.org/10.1038/s41429-024-00758-8.
Niu S, Wei J, Zou C, Chavda KD, Lv J, Zhang H, et al. In vitro selection of aztreonam/avibactam resistance in dual-carbapenemase-producing Klebsiella pneumoniae. J Antimicrob Chemother. 2020;75:559–65. https://doi.org/10.1093/jac/dkz468
Article PubMed CAS Google Scholar
Sader HS, Mendes RE, Pfaller MA, Shortridge D, Flamm RK, Castanheira M. Antimicrobial activities of Aztreonam-Avibactam and comparator agents against Contemporary (2016) Clinical Enterobacteriaceae Isolates. Antimicrob Agents Chemother 2017;62. https://doi.org/10.1128/aac.01856-17.
Nordmann P, Yao Y, Falgenhauer L, Sadek M, Imirzalioglu C, Chakraborty T. Recent emergence of Aztreonam-Avibactam resistance in NDM and OXA-48 Carbapenemase-Producing Escherichia coli in Germany. Antimicrob Agents Chemother 2021;65:https://doi.org/10.1128/aac.01090-21.
Wu S, Zong Z. Aztreonam-avibactam: an option against carbapenem-resistant Enterobacterales with emerging resistance. Precis Clin Med. 2022;5:pbac029 https://doi.org/10.1093/pcmedi/pbac029
留言 (0)