Structure-function analysis of 2-sulfamoylacetic acid synthase in altemicidin biosynthesis

Takahashi A, Kurasawa S, Ikeda D, Okami Y, Takeuchi T. Altemicidin, a new acaricidal and antitumor substance. I. Taxonomy, fermentation, isolation and physico-chemical and biological properties. J Antibiot. 1989;42:1556–61.

Article  CAS  Google Scholar 

Takahashi A, Ikeda D, Nakamura H, Naganawa H, Kurasawa S, Okami Y, et al. Altemicidin, a new acaricidal and antitumor substance. II. Structure determination. J Antibiot. 1989;42:1562–6.

Article  CAS  Google Scholar 

Stefanska AL, Cassels R, Ready SJ, Warr SR. SB-203207 and SB-203208, two novel isoleucyl tRNA synthetase inhibitors from a Streptomyces sp. I. Fermentation, isolation and properties. J Antibiot. 2000;53:357–63.

Article  CAS  Google Scholar 

Houge-Frydrych CS, Gilpin ML, Skett PW, Tyler JW. SB-203207 and SB-203208, two novel isoleucyl tRNA synthetase inhibitors from a Streptomyces sp. II. Structure determination. J Antibiot. 2000;53:364–72.

Article  CAS  Google Scholar 

Banwell MG, Crasto CF, Easton CJ, Forrest AK, Karoli T, March DR, et al. Analogues of SB-203207 as inhibitors of tRNA synthetases. Bioorg Med Chem Lett. 2000;10:2263–6.

Article  CAS  PubMed  Google Scholar 

Crasto CF, Forrest AK, Karoli T, March DR, Mensah L, O’Hanlon PJ, et al. Synthesis and activity of analogues of the isoleucyl tRNA synthetase inhibitor SB-203207. Bioorg Med Chem. 2003;11:2687–94.

Article  CAS  PubMed  Google Scholar 

Awakawa T, Barra L, Abe I. Biosynthesis of sulfonamide and sulfamate antibiotics in actinomycete. J Ind Microbiol Biotechnol. 2021;48:kuab001.

Barra L, Awakawa T, Abe I. Noncanonical functions of enzyme cofactors as building blocks in natural product biosynthesis. JACS Au. 2022;2:1950–63.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mujumdar P, Poulsen SA. Natural product primary sulfonamides and primary sulfamates. J Nat Prod. 2015;78:1470–7.

Article  CAS  PubMed  Google Scholar 

Ovung A, Bhattacharyya J. Sulfonamide drugs: structure, antibacterial property, toxicity, and biophysical interactions. Biophys Rev. 2021;13:259–72.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hu Z, Awakawa T, Ma Z, Abe I. Aminoacyl sulfonamide assembly in SB-203208 biosynthesis. Nat Commun. 2019;10:184.

Article  PubMed  PubMed Central  Google Scholar 

Barra L, Awakawa T, Shirai K, Hu Z, Bashiri G, Abe I. β-NAD as a building block in natural product biosynthesis. Nature. 2021;600:754–8.

Article  CAS  PubMed  Google Scholar 

Gruez A, Roig-Zamboni V, Grisel S, Salomoni A, Valencia C, Campanacci V, et al. Crystal structure and kinetics identify Escherichia coli YdcW gene product as a medium-chain aldehyde dehydrogenase. J Mol Biol. 2004;343:29–41.

Article  CAS  PubMed  Google Scholar 

Hong SH, Ngo HP, Nam HK, Kim KR, Kang LW, Oh DK. Alternative biotransformation of retinal to retinoic acid or retinol by an aldehyde dehydrogenase from Bacillus cereus. Appl Environ Microbiol. 2016;82:3940–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kabsch W. XDS. Acta Crystallogr D Biol Crystallogr. 2010;66:125–32.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Evans PR, Murshudov GN. How good are my data and what is the resolution? Acta Crystallogr D Biol Crystallogr. 2013;69:1204–14.

Article  CAS  PubMed  PubMed Central  Google Scholar 

McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ. Phaser crystallographic software. J Appl Crystallogr. 2007;40:658–74.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Adams PD, Afonine PV, Bunkóczi G, Chen VB, Davis IW, Echols N, et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr. 2010;66:213–21.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Afonine PV, Grosse-Kunstleve RW, Echols N, Headd JJ, Moriarty NW, Mustyakimov M, et al. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr D Biol Crystallogr. 2012;68:352–67.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Holm L, Rosenström P. Dali server: conservation mapping in 3D. Nucleic Acids Res. 2010;38:W545–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminform. 2012;4:17.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moriarty NW, Grosse-Kunstleve RW, Adams PD. electronic Ligand Builder and Optimization Workbench (eLBOW): a tool for ligand coordinate and restraint generation. Acta Crystallogr D Biol Crystallogr. 2009;65:1074–80.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zahniser MPD, Prasad S, Kneen MM, Kreinbring CA, Petsko GA, Ringe D, et al. Structure and mechanism of benzaldehyde dehydrogenase from Pseudomonas putida ATCC 12633, a member of the Class 3 aldehyde dehydrogenase superfamily. Protein Eng Des Sel. 2017;30:271–8.

Article  PubMed  Google Scholar 

Srivastava D, Singh RK, Moxley MA, Henzl MT, Becker DF, Tanner JJ. The three-dimensional structural basis of type II hyperprolinemia. J Mol Biol. 2012;420:176–89.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu LK, Tanner JJ. Crystal structure of aldehyde dehydrogenase 16 reveals trans-hierarchical structural similarity and a new dimer. J Mol Biol. 2019;431:524–41.

Article  CAS  PubMed  Google Scholar 

Wulf H, Perzborn M, Sievers G, Scholz F, Bornscheuer UT. Kinetic resolution of glyceraldehyde using an aldehyde dehydrogenase from Deinococcus geothermalis DSM 11300 combined with electrochemical cofactor recycling. J Mol Catal B Enzym. 2012;74:144–50.

Article  CAS  Google Scholar 

Liu ZJ, Sun YJ, Rose J, Chung YJ, Hsiao CD, Chang WR, et al. The first structure of an aldehyde dehydrogenase reveals novel interactions between NAD and the Rossmann fold. Nat Struct Biol. 1997;4:317–26.

Article  CAS  PubMed  Google Scholar 

Shortall K, Djeghader A, Magner E, Soulimane T. Insights into aldehyde dehydrogenase enzymes: a structural perspective. Front Mol Biosci. 2021;8:659550.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang L, Ahvazi B, Szittner R, Vrielink A, Meighen E. A histidine residue in the catalytic mechanism distinguishes Vibrio harveyi aldehyde dehydrogenase from other members of the aldehyde dehydrogenase superfamily. Biochemistry. 2000;39:14409–18.

Article  CAS  PubMed  Google Scholar 

Sathyanarayanan N, Cannone G, Gakhar L, Katagihallimath N, Sowdhamini R, Ramaswamy S, et al. Molecular basis for metabolite channeling in a ring opening enzyme of the phenylacetate degradation pathway. Nat Commun. 2019;10:4127.

Article  PubMed  PubMed Central  Google Scholar 

Feldman RI, Weiner H. Horse liver aldehyde dehydrogenase. II. Kinetics and mechanistic implications of the dehydrogenase and esterase activity. J Biol Chem. 1972;247:267–72.

Article  CAS 

留言 (0)

沒有登入
gif