Therapeutic potential of isoallolithocholic acid in methicillin-resistant Staphylococcus Aureus peritoneal infection

Barber M. Methicillin-resistant staphylococci. J Clin Pathol. 1961;14:385–93.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Lee AS, de Lencastre H, Garau J, Kluytmans J, Malhotra-Kumar S, Peschel A, et al. Methicillin-resistant Staphylococcus aureus. Nat Rev Dis Prim. 2018;4:18033.

Article  PubMed  Google Scholar 

Samuel P, Kumar YS, Suthakar BJ, Karawita J, Sunil Kumar D, Vedha V, et al. Methicillin-resistant Staphylococcus aureus colonization in intensive care and burn units: a narrative review. Cureus. 2023;15:e47139.

PubMed  PubMed Central  Google Scholar 

Sergelidis D, Angelidis AS. Methicillin-resistant Staphylococcus aureus: a controversial food-borne pathogen. Lett Appl Microbiol. 2017;64:409–18.

Article  PubMed  CAS  Google Scholar 

Nannini E, Murray BE, Arias CA. Resistance or decreased susceptibility to glycopeptides, daptomycin, and linezolid in methicillin-resistant Staphylococcus aureus. Curr Opin Pharm. 2010;10:516–21.

Article  CAS  Google Scholar 

Cascioferro S, Carbone D, Parrino B, Pecoraro C, Giovannetti E, Cirrincione G, et al. Therapeutic strategies to counteract antibiotic resistance in MRSA biofilm-associated infections. ChemMedChem. 2021;16:65–80.

Article  PubMed  CAS  Google Scholar 

Fiorucci S, Distrutti E. Bile acid-activated receptors, intestinal microbiota, and the treatment of metabolic disorders. Trends Mol Med. 2015;21:702–14.

Article  PubMed  CAS  Google Scholar 

Ridlon JM, Kang DJ, Hylemon PB. Bile salt biotransformations by human intestinal bacteria. J Lipid Res. 2006;47:241–59.

Article  PubMed  CAS  Google Scholar 

Russell DW. The enzymes, regulation, and genetics of bile acid synthesis. Annu Rev Biochem. 2003;72:137–74.

Article  PubMed  CAS  Google Scholar 

Arifuzzaman M, Won TH, Li TT, Yano H, Digumarthi S, Heras AF, et al. Inulin fibre promotes microbiota-derived bile acids and type 2 inflammation. Nature. 2022;611:578–84.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Paik D, Yao L, Zhang Y, Bae S, D’Agostino GD, Zhang M, et al. Human gut bacteria produce Tau(Eta)17-modulating bile acid metabolites. Nature. 2022;603:907–12.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Funabashi M, Grove TL, Wang M, Varma Y, McFadden ME, Brown LC, et al. A metabolic pathway for bile acid dehydroxylation by the gut microbiome. Nature. 2020;582:566–70.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Campbell C, McKenney PT, Konstantinovsky D, Isaeva OI, Schizas M, Verter J, et al. Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells. Nature. 2020;581:475–9.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Hang S, Paik D, Yao L, Kim E, Trinath J, Lu J, et al. Bile acid metabolites control T(H)17 and T(reg) cell differentiation. Nature. 2019;576:143–8.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Song X, Sun X, Oh SF, Wu M, Zhang Y, Zheng W, et al. Microbial bile acid metabolites modulate gut RORgamma(+) regulatory T cell homeostasis. Nature. 2020;577:410–5.

Article  PubMed  CAS  Google Scholar 

Li W, Hang S, Fang Y, Bae S, Zhang Y, Zhang M, et al. A bacterial bile acid metabolite modulates T(reg) activity through the nuclear hormone receptor NR4A1. Cell Host Microbe. 2021;29:1366–77 e1369.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Sato Y, Atarashi K, Plichta DR, Arai Y, Sasajima S, Kearney SM, et al. Novel bile acid biosynthetic pathways are enriched in the microbiome of centenarians. Nature. 2021;599:458–64.

Article  PubMed  CAS  Google Scholar 

Barman S, Buzoglu Kurnaz L, Yang X, Nagarkatti M, Nagarkatti P, Decho AW, et al. Facially amphiphilic bile acid-functionalized antimicrobials: combating pathogenic bacteria, fungi, and their biofilms. ACS Infect Dis. 2023;9:1769–82.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Su J, Li H, Hu J, Wang D, Zhang F, Fu Z, et al. LcCCL28-25, derived from piscine chemokine, exhibits antimicrobial activity against gram-negative and gram-positive bacteria in vitro and in vivo. Microbiol Spectr. 2022;10:e0251521.

Article  PubMed  Google Scholar 

Wang C, Ji Y, Huo X, Li X, Lu W, Zhang Z, et al. Discovery of salifungin as a repurposed antibiotic against methicillin-resistant Staphylococcus aureus with limited resistance development. ACS Infect Dis. 2024;10:1576–89.

Article  PubMed  CAS  Google Scholar 

Zhu J, Wang Y, Wang W, Wu B, Lu Y, Du J, et al. Mptx2 defends against peritoneal infection by methicillin-resistant staphylococcus aureus. Int Immunopharmacol. 2022;108:108856.

Article  PubMed  CAS  Google Scholar 

Rajasekaran G, Kim EY, Shin SY. LL-37-derived membrane-active FK-13 analogs possessing cell selectivity, anti-biofilm activity and synergy with chloramphenicol and anti-inflammatory activity. Biochim Biophys Acta Biomembr. 2017;1859:722–33.

Article  PubMed  CAS  Google Scholar 

Rajasekaran G, Dinesh Kumar S, Nam J, Jeon D, Kim Y, Lee CW, et al. Antimicrobial and anti-inflammatory activities of chemokine CXCL14-derived antimicrobial peptide and its analogs. Biochim Biophys Acta Biomembr. 2019;1861:256–67.

Article  PubMed  CAS  Google Scholar 

Sandberg A, Hessler JH, Skov RL, Blom J, Frimodt-Moller N. Intracellular activity of antibiotics against Staphylococcus aureus in a mouse peritonitis model. Antimicrob Agents Chemother. 2009;53:1874–83.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Yan W, Chen S, Wang Y, You Y, Lu Y, Wang W, et al. Loss of Mptx2 alters bacteria composition and intestinal homeostasis potentially by impairing autophagy. Commun Biol. 2024;7:94.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Golden GJ, Toledo AG, Marki A, Sorrentino JT, Morris C, Riley RJ, et al. Endothelial heparan sulfate mediates hepatic neutrophil trafficking and injury during Staphylococcus aureus Sepsis. mBio. 2021;12:e0118121.

Article  PubMed  Google Scholar 

Shen W, Yang N, Teng D, Hao Y, Ma X, Mao R, et al. Design and high expression of non-glycosylated lysostaphins in pichia pastoris and their pharmacodynamic study. Front Microbiol. 2021;12:637662.

Article  PubMed  PubMed Central  Google Scholar 

Miyamoto Y, Kikuta J, Matsui T, Hasegawa T, Fujii K, Okuzaki D, et al. Periportal macrophages protect against commensal-driven liver inflammation. Nature. 2024;629:901–9.

Article  PubMed  CAS  Google Scholar 

Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 2018;18:318–27.

Article  PubMed  Google Scholar 

Vestergaard M, Frees D, Ingmer H. Antibiotic resistance and the MRSA problem. Microbiol Spectr. 2019;7:GPP3-0057-2018.

Falany CN, Johnson MR, Barnes S, Diasio RB. Glycine and taurine conjugation of bile acids by a single enzyme. Molecular cloning and expression of human liver bile acid CoA:amino acid N-acyltransferase. J Biol Chem. 1994;269:19375–9.

Article  PubMed  CAS 

留言 (0)

沒有登入
gif