Barber M. Methicillin-resistant staphylococci. J Clin Pathol. 1961;14:385–93.
Article PubMed PubMed Central CAS Google Scholar
Lee AS, de Lencastre H, Garau J, Kluytmans J, Malhotra-Kumar S, Peschel A, et al. Methicillin-resistant Staphylococcus aureus. Nat Rev Dis Prim. 2018;4:18033.
Samuel P, Kumar YS, Suthakar BJ, Karawita J, Sunil Kumar D, Vedha V, et al. Methicillin-resistant Staphylococcus aureus colonization in intensive care and burn units: a narrative review. Cureus. 2023;15:e47139.
PubMed PubMed Central Google Scholar
Sergelidis D, Angelidis AS. Methicillin-resistant Staphylococcus aureus: a controversial food-borne pathogen. Lett Appl Microbiol. 2017;64:409–18.
Article PubMed CAS Google Scholar
Nannini E, Murray BE, Arias CA. Resistance or decreased susceptibility to glycopeptides, daptomycin, and linezolid in methicillin-resistant Staphylococcus aureus. Curr Opin Pharm. 2010;10:516–21.
Cascioferro S, Carbone D, Parrino B, Pecoraro C, Giovannetti E, Cirrincione G, et al. Therapeutic strategies to counteract antibiotic resistance in MRSA biofilm-associated infections. ChemMedChem. 2021;16:65–80.
Article PubMed CAS Google Scholar
Fiorucci S, Distrutti E. Bile acid-activated receptors, intestinal microbiota, and the treatment of metabolic disorders. Trends Mol Med. 2015;21:702–14.
Article PubMed CAS Google Scholar
Ridlon JM, Kang DJ, Hylemon PB. Bile salt biotransformations by human intestinal bacteria. J Lipid Res. 2006;47:241–59.
Article PubMed CAS Google Scholar
Russell DW. The enzymes, regulation, and genetics of bile acid synthesis. Annu Rev Biochem. 2003;72:137–74.
Article PubMed CAS Google Scholar
Arifuzzaman M, Won TH, Li TT, Yano H, Digumarthi S, Heras AF, et al. Inulin fibre promotes microbiota-derived bile acids and type 2 inflammation. Nature. 2022;611:578–84.
Article PubMed PubMed Central CAS Google Scholar
Paik D, Yao L, Zhang Y, Bae S, D’Agostino GD, Zhang M, et al. Human gut bacteria produce Tau(Eta)17-modulating bile acid metabolites. Nature. 2022;603:907–12.
Article PubMed PubMed Central CAS Google Scholar
Funabashi M, Grove TL, Wang M, Varma Y, McFadden ME, Brown LC, et al. A metabolic pathway for bile acid dehydroxylation by the gut microbiome. Nature. 2020;582:566–70.
Article PubMed PubMed Central CAS Google Scholar
Campbell C, McKenney PT, Konstantinovsky D, Isaeva OI, Schizas M, Verter J, et al. Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells. Nature. 2020;581:475–9.
Article PubMed PubMed Central CAS Google Scholar
Hang S, Paik D, Yao L, Kim E, Trinath J, Lu J, et al. Bile acid metabolites control T(H)17 and T(reg) cell differentiation. Nature. 2019;576:143–8.
Article PubMed PubMed Central CAS Google Scholar
Song X, Sun X, Oh SF, Wu M, Zhang Y, Zheng W, et al. Microbial bile acid metabolites modulate gut RORgamma(+) regulatory T cell homeostasis. Nature. 2020;577:410–5.
Article PubMed CAS Google Scholar
Li W, Hang S, Fang Y, Bae S, Zhang Y, Zhang M, et al. A bacterial bile acid metabolite modulates T(reg) activity through the nuclear hormone receptor NR4A1. Cell Host Microbe. 2021;29:1366–77 e1369.
Article PubMed PubMed Central CAS Google Scholar
Sato Y, Atarashi K, Plichta DR, Arai Y, Sasajima S, Kearney SM, et al. Novel bile acid biosynthetic pathways are enriched in the microbiome of centenarians. Nature. 2021;599:458–64.
Article PubMed CAS Google Scholar
Barman S, Buzoglu Kurnaz L, Yang X, Nagarkatti M, Nagarkatti P, Decho AW, et al. Facially amphiphilic bile acid-functionalized antimicrobials: combating pathogenic bacteria, fungi, and their biofilms. ACS Infect Dis. 2023;9:1769–82.
Article PubMed PubMed Central CAS Google Scholar
Su J, Li H, Hu J, Wang D, Zhang F, Fu Z, et al. LcCCL28-25, derived from piscine chemokine, exhibits antimicrobial activity against gram-negative and gram-positive bacteria in vitro and in vivo. Microbiol Spectr. 2022;10:e0251521.
Wang C, Ji Y, Huo X, Li X, Lu W, Zhang Z, et al. Discovery of salifungin as a repurposed antibiotic against methicillin-resistant Staphylococcus aureus with limited resistance development. ACS Infect Dis. 2024;10:1576–89.
Article PubMed CAS Google Scholar
Zhu J, Wang Y, Wang W, Wu B, Lu Y, Du J, et al. Mptx2 defends against peritoneal infection by methicillin-resistant staphylococcus aureus. Int Immunopharmacol. 2022;108:108856.
Article PubMed CAS Google Scholar
Rajasekaran G, Kim EY, Shin SY. LL-37-derived membrane-active FK-13 analogs possessing cell selectivity, anti-biofilm activity and synergy with chloramphenicol and anti-inflammatory activity. Biochim Biophys Acta Biomembr. 2017;1859:722–33.
Article PubMed CAS Google Scholar
Rajasekaran G, Dinesh Kumar S, Nam J, Jeon D, Kim Y, Lee CW, et al. Antimicrobial and anti-inflammatory activities of chemokine CXCL14-derived antimicrobial peptide and its analogs. Biochim Biophys Acta Biomembr. 2019;1861:256–67.
Article PubMed CAS Google Scholar
Sandberg A, Hessler JH, Skov RL, Blom J, Frimodt-Moller N. Intracellular activity of antibiotics against Staphylococcus aureus in a mouse peritonitis model. Antimicrob Agents Chemother. 2009;53:1874–83.
Article PubMed PubMed Central CAS Google Scholar
Yan W, Chen S, Wang Y, You Y, Lu Y, Wang W, et al. Loss of Mptx2 alters bacteria composition and intestinal homeostasis potentially by impairing autophagy. Commun Biol. 2024;7:94.
Article PubMed PubMed Central CAS Google Scholar
Golden GJ, Toledo AG, Marki A, Sorrentino JT, Morris C, Riley RJ, et al. Endothelial heparan sulfate mediates hepatic neutrophil trafficking and injury during Staphylococcus aureus Sepsis. mBio. 2021;12:e0118121.
Shen W, Yang N, Teng D, Hao Y, Ma X, Mao R, et al. Design and high expression of non-glycosylated lysostaphins in pichia pastoris and their pharmacodynamic study. Front Microbiol. 2021;12:637662.
Article PubMed PubMed Central Google Scholar
Miyamoto Y, Kikuta J, Matsui T, Hasegawa T, Fujii K, Okuzaki D, et al. Periportal macrophages protect against commensal-driven liver inflammation. Nature. 2024;629:901–9.
Article PubMed CAS Google Scholar
Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 2018;18:318–27.
Vestergaard M, Frees D, Ingmer H. Antibiotic resistance and the MRSA problem. Microbiol Spectr. 2019;7:GPP3-0057-2018.
Falany CN, Johnson MR, Barnes S, Diasio RB. Glycine and taurine conjugation of bile acids by a single enzyme. Molecular cloning and expression of human liver bile acid CoA:amino acid N-acyltransferase. J Biol Chem. 1994;269:19375–9.
留言 (0)