Lymphatic collection and cell isolation from mouse models for multiomic profiling

Leong, S. P. et al. Clinical patterns of metastasis. Cancer Metastasis Rev. 25, 221–232 (2006).

Article  PubMed  Google Scholar 

Sleeman, J., Schmid, A. & Thiele, W. Tumor lymphatics. Semin. Cancer Biol. 19, 285–297 (2009).

Article  CAS  PubMed  Google Scholar 

Fink, D. M., Steele, M. M. & Hollingsworth, M. A. The lymphatic system and pancreatic cancer. Cancer Lett. 381, 217–236 (2016).

Article  CAS  PubMed  Google Scholar 

Padera, T. P., Meijer, E. F. & Munn, L. L. The lymphatic system in disease processes and cancer progression. Annu. Rev. Biomed. Eng. 18, 125–158 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Amin, M., Greene, F., Edge, S. & Byrd, D. AJCC Cancer Staging Manual 8th edn (Springer, 2017).

Fares, J., Fares, M. Y., Khachfe, H. H., Salhab, H. A. & Fares, Y. Molecular principles of metastasis: a hallmark of cancer revisited. Signal Transduct. Target. Ther. 5, 28 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Oliver, G., Kipnis, J., Randolph, G. J. & Harvey, N. L. The lymphatic vasculature in the 21st century: Novel functional roles in homeostasis and disease. Cell 182, 270–296 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rofstad, E. K., Galappathi, K. & Mathiesen, B. S. Tumor interstitial fluid pressure-a link between tumor hypoxia, microvascular density, and lymph node metastasis. Neoplasia 16, 586–594 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Broggi, M. A. S. et al. Tumor-associated factors are enriched in lymphatic exudate compared to plasma in metastatic melanoma patients. J. Exp. Med. 216, 1091–1107 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boucher, Y., Baxter, L. T. & Jain, R. K. Interstitial pressure gradients in tissue-isolated and subcutaneous tumors: implications for therapy. Cancer Res. 50, 4478–4484 (1990).

CAS  PubMed  Google Scholar 

Rofstad, E. K. et al. Pulmonary and lymph node metastasis is associated with primary tumor interstitial fluid pressure in human melanoma xenografts. Cancer Res. 62, 661–664 (2002).

CAS  PubMed  Google Scholar 

Dadiani, M. et al. Real-time imaging of lymphogenic metastasis in orthotopic human breast cancer. Cancer Res. 66, 8037–8041 (2006).

Article  CAS  PubMed  Google Scholar 

Polacheck, W. J., Charest, J. L. & Kamm, R. D. Interstitial flow influences direction of tumor cell migration through competing mechanisms. Proc. Natl Acad. Sci. USA 108, 11115–11120 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hompland, T., Ellingsen, C., Ovrebo, K. M. & Rofstad, E. K. Interstitial fluid pressure and associated lymph node metastasis revealed in tumors by dynamic contrast-enhanced MRI. Cancer Res. 72, 4899–4908 (2012).

Article  CAS  PubMed  Google Scholar 

Reticker-Flynn, N. E. & Engleman, E. G. Lymph nodes: at the intersection of cancer treatment and progression. Trends Cell Biol. 33, 1021–1034 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pereira, E. R. et al. Lymph node metastases can invade local blood vessels, exit the node, and colonize distant organs in mice. Science 359, 1403–1407 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brown, M. et al. Lymph node blood vessels provide exit routes for metastatic tumor cell dissemination in mice. Science 359, 1408–1411 (2018).

Article  CAS  PubMed  Google Scholar 

Che Bakri, N. A. et al. Impact of axillary lymph node dissection and sentinel lymph node biopsy on upper limb morbidity in breast cancer patients: a systematic review and meta-analysis. Ann. Surg. 277, 572–580 (2023).

Article  PubMed  Google Scholar 

Xu, Z. Y. et al. Seizing the fate of lymph nodes in immunotherapy: to preserve or not? Cancer Lett. 588, 216740 (2024).

Article  CAS  PubMed  Google Scholar 

Reticker-Flynn, N. E. et al. Lymph node colonization induces tumor-immune tolerance to promote distant metastasis. Cell 185, 1924–1942 e23 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou, H. et al. Cancer immunotherapy responses persist after lymph node resection. Preprint at bioRxiv https://doi.org/10.1101/2023.09.19.558262 (2023).

Karakousi, T., Mudianto, T. & Lund, A. W. Lymphatic vessels in the age of cancer immunotherapy. Nat. Rev. Cancer 24, 363–381 (2024).

Article  CAS  PubMed  Google Scholar 

Delclaux, I., Ventre, K. S., Jones, D. & Lund, A. W. The tumor-draining lymph node as a reservoir for systemic immune surveillance. Trends Cancer 10, 28–37 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Forde, P. M. et al. Neoadjuvant PD-1 blockade in resectable lung cancer. N. Engl. J. Med. 378, 1976–1986 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Deng, H. et al. Impact of lymphadenectomy extent on immunotherapy efficacy in postresectional recurred non-small cell lung cancer: a multi-institutional retrospective cohort study. Int. J. Surg. 110, 238–252 (2024).

PubMed  Google Scholar 

Spitzer, M. H. et al. Systemic immunity is required for effective cancer immunotherapy. Cell 168, 487–502 e415 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fransen, M. F. et al. Tumor-draining lymph nodes are pivotal in PD-1/PD-L1 checkpoint therapy. JCI Insight 3, e124507 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Prokhnevska, N. et al. CD8+ T cell activation in cancer comprises an initial activation phase in lymph nodes followed by effector differentiation within the tumor. Immunity 56, 107–124 e105 (2023).

Article  CAS  PubMed  Google Scholar 

Baluk, P. et al. Functionally specialized junctions between endothelial cells of lymphatic vessels. J. Exp. Med. 204, 2349–2362 (2007).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Thorup, L., Hjortdal, A., Boedtkjer, D. B., Thomsen, M. B. & Hjortdal, V. The transport function of the human lymphatic system—a systematic review. Physiol. Rep. 11, e15697 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Blatter, C. et al. In vivo label-free measurement of lymph flow velocity and volumetric flow rates using Doppler optical coherence tomography. Sci. Rep. 6, 29035 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bouta, E. M. et al. In vivo quantification of lymph viscosity and pressure in lymphatic vessels and draining lymph nodes of arthritic joints in mice. J. Physiol. 592, 1213–1223 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kwon, S. & Sevick-Muraca, E. M. Noninvasive quantitative imaging of lymph function in mice. Lymphat. Res. Biol. 5, 219–231 (2007).

A

留言 (0)

沒有登入
gif