Holoch, D. & Moazed, D. RNA-mediated epigenetic regulation of gene expression. Nat. Rev. Genet. 16, 71–84 (2015).
Article CAS PubMed PubMed Central Google Scholar
Li, Y. et al. N6-methyladenosine co-transcriptionally directs the demethylation of histone H3K9me2. Nat. Genet. 52, 870–877 (2020).
Article CAS PubMed Google Scholar
Yu, S. & Kim, V. N. A tale of non-canonical tails: gene regulation by post-transcriptional RNA tailing. Nat. Rev. Mol. Cell Biol. 21, 542–556 (2020).
Article CAS PubMed Google Scholar
Flynn, R. A. et al. Small RNAs are modified with N-glycans and displayed on the surface of living cells. Cell 184, 3109–3124.e22 (2021).
Article CAS PubMed PubMed Central Google Scholar
Reily, C., Stewart, T. J., Renfrow, M. B. & Novak, J. Glycosylation in health and disease. Nat. Rev. Nephrol. 15, 346–366 (2019).
Article PubMed PubMed Central Google Scholar
Ma, Y. et al. Spatial imaging of glycoRNA in single cells with ARPLA. Nat. Biotechnol. 42, 608–616 (2024).
Article CAS PubMed Google Scholar
Zhang, N. et al. Cell surface RNAs control neutrophil recruitment. Cell 187, 846–860 e17 (2024).
Article CAS PubMed Google Scholar
Liu, H. et al. In situ visualization of RNA-specific sialylation on living cell membranes to explore N-glycosylation sites. J. Am. Chem. Soc. 146, 8780–8786 (2024).
Article CAS PubMed Google Scholar
Perr, J. et al. RNA binding proteins and glycoRNAs form domains on the cell surface for cell penetrating peptide entry. Preprint at bioRxiv https://doi.org/10.1101/2023.09.04.556039 (2023).
Quinn, J. J. & Chang, H. Y. Unique features of long non-coding RNA biogenesis and function. Nat. Rev. Genet. 17, 47–62 (2016).
Article CAS PubMed Google Scholar
Li, J. et al. Novel approach to enriching glycosylated RNAs: specific capture of glycoRNAs via solid-phase chemistry. Anal. Chem. 95, 11969–11977 (2023).
Article CAS PubMed Google Scholar
Hemberger, H. et al. Rapid and sensitive detection of native glycoRNAs. Preprint at bioRxiv https://doi.org/10.1101/2023.02.26.530106 (2023).
Ming, B., Zirui, Z., Tao, W., Hongwei, L. & Zhixin, T. A draft of human N-glycans of glycoRNA. Preprint at bioRxiv https://doi.org/10.1101/2023.09.18.558371 (2023).
Yixuan, X. et al. The modified RNA base acp3U is an attachment site for N-glycans in glycoRNA. Cell 187, 5228–5237 (2024).
Yixuan, X. et al. Development and application of GlycanDIA workflow for glycomic analysis. Preprint at bioRxiv https://doi.org/10.1101/2024.03.12.584702 (2024).
Ding, Y. & Liu, J. Pushing adenosine and ATP SELEX for DNA aptamers with nanomolar affinity. J. Am. Chem. Soc. 145, 7540–7547 (2023).
Article CAS PubMed Google Scholar
Keefe, A. D., Pai, S. & Ellington, A. Aptamers as therapeutics. Nat. Rev. Drug Discov. 9, 537–550 (2010).
Article CAS PubMed PubMed Central Google Scholar
Liu, J., Cao, Z. & Lu, Y. Functional nucleic acid sensors. Chem. Rev. 109, 1948–1998 (2009).
Article CAS PubMed PubMed Central Google Scholar
Zhou, W., Saran, R. & Liu, J. Metal sensing by DNA. Chem. Rev. 117, 8272–8325 (2017).
Article CAS PubMed Google Scholar
Harada, K. & Frankel, A. D. Identification of two novel arginine binding DNAs. EMBO J. 14, 5798–5811 (1995).
Article CAS PubMed PubMed Central Google Scholar
Huizenga, D. E. & Szostak, J. W. A DNA aptamer that binds adenosine and ATP. Biochemistry 34, 656–665 (1995).
Article CAS PubMed Google Scholar
Hong, S. et al. A photo-regulated aptamer sensor for spatiotemporally controlled monitoring of ATP in the mitochondria of living cells. Chem. Sci. 11, 713–720 (2020).
Bock, L. C., Griffin, L. C., Latham, J. A., Vermaas, E. H. & Toole, J. J. Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature 355, 564–566 (1992).
Article CAS PubMed Google Scholar
Lin, Y., Padmapriya, A., Morden, K. M. & Jayasena, S. D. Peptide conjugation to an in vitro-selected DNA ligand improves enzyme inhibition. Proc. Natl Acad. Sci. USA 92, 11044–11048 (1995).
Article CAS PubMed PubMed Central Google Scholar
Peinetti Ana, S. et al. Direct detection of human adenovirus or SARS-CoV-2 with ability to inform infectivity using DNA aptamer–nanopore sensors. Sci. Adv. 7, eabh2848 (2021).
Article CAS PubMed PubMed Central Google Scholar
Sefah, K., Shangguan, D., Xiong, X., O’Donoghue, M. B. & Tan, W. Development of DNA aptamers using Cell-SELEX. Nat. Protoc. 5, 1169–1185 (2010).
Article CAS PubMed Google Scholar
Xue, C. et al. Periodically ordered, nuclease-resistant DNA nanowires decorated with cell-specific aptamers as selective theranostic agents. Angew. Chem. Int. Ed. 59, 17540–17547 (2020).
Yang, K.-A. et al. Recognition and sensing of low-epitope targets via ternary complexes with oligonucleotides and synthetic receptors. Nat. Chem. 6, 1003–1008 (2014).
Article CAS PubMed PubMed Central Google Scholar
Nakatsuka, N. et al. Aptamer–field-effect transistors overcome Debye length limitations for small-molecule sensing. Science 362, 319–324 (2018).
Article CAS PubMed PubMed Central Google Scholar
Zhu, Y. & Hart, G. W. Dual-specificity RNA aptamers enable manipulation of target-specific O-glc-N-acylation and unveil functions of O-glc-N-ac on beta-catenin. Cell 186, 428–445 e27 (2023).
Article CAS PubMed PubMed Central Google Scholar
Yue, H. et al. Systematic screening and optimization of single-stranded DNA aptamer specific for N-acetylneuraminic acid: a comparative study. Sens. Actuators B 344, 130270 (2021).
Gong, S. et al. A novel analytical probe binding to a potential carcinogenic factor of N-glycolylneuraminic acid by SELEX. Biosens. Bioelectron. 49, 547–554 (2013).
Article CAS PubMed Google Scholar
Cho, S., Lee, B.-R., Cho, B.-K., Kim, J.-H. & Kim, B.-G. In vitro selection of sialic acid specific RNA aptamer and its application to the rapid sensing of sialic acid modified sugars. Biotechnol. Bioeng. 110, 905–913 (2013).
Article CAS PubMed Google Scholar
Yoshikawa, A. M. et al. Discovery of indole-modified aptamers for highly specific recognition of protein glycoforms. Nat. Commun. 12, 7106 (2021).
Article CAS PubMed PubMed Central Google Scholar
Díaz-Fernández, A., Miranda-Castro, R., de-los-Santos-Álvarez, N., Rodríguez, E. F. & Lobo-Castañón, M. J. Focusing aptamer selection on the glycan structure of prostate-specific antigen: toward more specific detection of prostate cancer. Biosens. Bioelectron. 128, 83–90 (2019).
留言 (0)