Sialic acid aptamer and RNA in situ hybridization-mediated proximity ligation assay for spatial imaging of glycoRNAs in single cells

Holoch, D. & Moazed, D. RNA-mediated epigenetic regulation of gene expression. Nat. Rev. Genet. 16, 71–84 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, Y. et al. N6-methyladenosine co-transcriptionally directs the demethylation of histone H3K9me2. Nat. Genet. 52, 870–877 (2020).

Article  CAS  PubMed  Google Scholar 

Yu, S. & Kim, V. N. A tale of non-canonical tails: gene regulation by post-transcriptional RNA tailing. Nat. Rev. Mol. Cell Biol. 21, 542–556 (2020).

Article  CAS  PubMed  Google Scholar 

Flynn, R. A. et al. Small RNAs are modified with N-glycans and displayed on the surface of living cells. Cell 184, 3109–3124.e22 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Reily, C., Stewart, T. J., Renfrow, M. B. & Novak, J. Glycosylation in health and disease. Nat. Rev. Nephrol. 15, 346–366 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Ma, Y. et al. Spatial imaging of glycoRNA in single cells with ARPLA. Nat. Biotechnol. 42, 608–616 (2024).

Article  CAS  PubMed  Google Scholar 

Zhang, N. et al. Cell surface RNAs control neutrophil recruitment. Cell 187, 846–860 e17 (2024).

Article  CAS  PubMed  Google Scholar 

Liu, H. et al. In situ visualization of RNA-specific sialylation on living cell membranes to explore N-glycosylation sites. J. Am. Chem. Soc. 146, 8780–8786 (2024).

Article  CAS  PubMed  Google Scholar 

Perr, J. et al. RNA binding proteins and glycoRNAs form domains on the cell surface for cell penetrating peptide entry. Preprint at bioRxiv https://doi.org/10.1101/2023.09.04.556039 (2023).

Quinn, J. J. & Chang, H. Y. Unique features of long non-coding RNA biogenesis and function. Nat. Rev. Genet. 17, 47–62 (2016).

Article  CAS  PubMed  Google Scholar 

Li, J. et al. Novel approach to enriching glycosylated RNAs: specific capture of glycoRNAs via solid-phase chemistry. Anal. Chem. 95, 11969–11977 (2023).

Article  CAS  PubMed  Google Scholar 

Hemberger, H. et al. Rapid and sensitive detection of native glycoRNAs. Preprint at bioRxiv https://doi.org/10.1101/2023.02.26.530106 (2023).

Ming, B., Zirui, Z., Tao, W., Hongwei, L. & Zhixin, T. A draft of human N-glycans of glycoRNA. Preprint at bioRxiv https://doi.org/10.1101/2023.09.18.558371 (2023).

Yixuan, X. et al. The modified RNA base acp3U is an attachment site for N-glycans in glycoRNA. Cell 187, 5228–5237 (2024).

Article  Google Scholar 

Yixuan, X. et al. Development and application of GlycanDIA workflow for glycomic analysis. Preprint at bioRxiv https://doi.org/10.1101/2024.03.12.584702 (2024).

Ding, Y. & Liu, J. Pushing adenosine and ATP SELEX for DNA aptamers with nanomolar affinity. J. Am. Chem. Soc. 145, 7540–7547 (2023).

Article  CAS  PubMed  Google Scholar 

Keefe, A. D., Pai, S. & Ellington, A. Aptamers as therapeutics. Nat. Rev. Drug Discov. 9, 537–550 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu, J., Cao, Z. & Lu, Y. Functional nucleic acid sensors. Chem. Rev. 109, 1948–1998 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou, W., Saran, R. & Liu, J. Metal sensing by DNA. Chem. Rev. 117, 8272–8325 (2017).

Article  CAS  PubMed  Google Scholar 

Harada, K. & Frankel, A. D. Identification of two novel arginine binding DNAs. EMBO J. 14, 5798–5811 (1995).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huizenga, D. E. & Szostak, J. W. A DNA aptamer that binds adenosine and ATP. Biochemistry 34, 656–665 (1995).

Article  CAS  PubMed  Google Scholar 

Hong, S. et al. A photo-regulated aptamer sensor for spatiotemporally controlled monitoring of ATP in the mitochondria of living cells. Chem. Sci. 11, 713–720 (2020).

Article  CAS  Google Scholar 

Bock, L. C., Griffin, L. C., Latham, J. A., Vermaas, E. H. & Toole, J. J. Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature 355, 564–566 (1992).

Article  CAS  PubMed  Google Scholar 

Lin, Y., Padmapriya, A., Morden, K. M. & Jayasena, S. D. Peptide conjugation to an in vitro-selected DNA ligand improves enzyme inhibition. Proc. Natl Acad. Sci. USA 92, 11044–11048 (1995).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peinetti Ana, S. et al. Direct detection of human adenovirus or SARS-CoV-2 with ability to inform infectivity using DNA aptamer–nanopore sensors. Sci. Adv. 7, eabh2848 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sefah, K., Shangguan, D., Xiong, X., O’Donoghue, M. B. & Tan, W. Development of DNA aptamers using Cell-SELEX. Nat. Protoc. 5, 1169–1185 (2010).

Article  CAS  PubMed  Google Scholar 

Xue, C. et al. Periodically ordered, nuclease-resistant DNA nanowires decorated with cell-specific aptamers as selective theranostic agents. Angew. Chem. Int. Ed. 59, 17540–17547 (2020).

Article  CAS  Google Scholar 

Yang, K.-A. et al. Recognition and sensing of low-epitope targets via ternary complexes with oligonucleotides and synthetic receptors. Nat. Chem. 6, 1003–1008 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nakatsuka, N. et al. Aptamer–field-effect transistors overcome Debye length limitations for small-molecule sensing. Science 362, 319–324 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhu, Y. & Hart, G. W. Dual-specificity RNA aptamers enable manipulation of target-specific O-glc-N-acylation and unveil functions of O-glc-N-ac on beta-catenin. Cell 186, 428–445 e27 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yue, H. et al. Systematic screening and optimization of single-stranded DNA aptamer specific for N-acetylneuraminic acid: a comparative study. Sens. Actuators B 344, 130270 (2021).

Article  CAS  Google Scholar 

Gong, S. et al. A novel analytical probe binding to a potential carcinogenic factor of N-glycolylneuraminic acid by SELEX. Biosens. Bioelectron. 49, 547–554 (2013).

Article  CAS  PubMed  Google Scholar 

Cho, S., Lee, B.-R., Cho, B.-K., Kim, J.-H. & Kim, B.-G. In vitro selection of sialic acid specific RNA aptamer and its application to the rapid sensing of sialic acid modified sugars. Biotechnol. Bioeng. 110, 905–913 (2013).

Article  CAS  PubMed  Google Scholar 

Yoshikawa, A. M. et al. Discovery of indole-modified aptamers for highly specific recognition of protein glycoforms. Nat. Commun. 12, 7106 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Díaz-Fernández, A., Miranda-Castro, R., de-los-Santos-Álvarez, N., Rodríguez, E. F. & Lobo-Castañón, M. J. Focusing aptamer selection on the glycan structure of prostate-specific antigen: toward more specific detection of prostate cancer. Biosens. Bioelectron. 128, 83–90 (2019).

留言 (0)

沒有登入
gif