Yates, J. R. III. A century of mass spectrometry: from atoms to proteomes. Nat. Methods 8, 633–637 (2011).
Eliuk, S. & Makarov, A. Evolution of Orbitrap mass spectrometry instrumentation. Annu. Rev. Anal. Chem. 8, 61–80 (2015).
Bogdanov, B. & Smith, R. D. Proteomics by FTICR mass spectrometry: top down and bottom up. Mass Spectrom. Rev. 24, 168–200 (2005).
Article CAS PubMed Google Scholar
Boesl, U. Time-of-flight mass spectrometry: introduction to the basics. Mass Spectrom. Rev. 36, 86–109 (2017).
Article CAS PubMed Google Scholar
Cooks, R. G., Glish, G. L., McLuckey, S. A. & Kaiser, R. E. Ion trap mass spectrometry. Chem. Eng. N. Arch. 69, 26–41 (1991).
Jarrold, M. F. Applications of charge detection mass spectrometry in molecular biology and biotechnology. Chem. Rev. 122, 7415–7441 (2022).
Article CAS PubMed Google Scholar
Todd, A. R., Barnes, L. F., Young, K., Zlotnick, A. & Jarrold, M. F. Higher resolution charge detection mass spectrometry. Anal. Chem. 92, 11357–11364 (2020).
Article CAS PubMed PubMed Central Google Scholar
Miller, L. M. et al. Heterogeneity of glycan processing on trimeric SARS-CoV-2 spike protein revealed by charge detection mass spectrometry. J. Am. Chem. Soc. 143, 3959–3966 (2021).
Article CAS PubMed PubMed Central Google Scholar
Kafader, J. O. et al. Multiplexed mass spectrometry of individual ions improves measurement of proteoforms and their complexes. Nat. Methods 17, 391–394 (2020).
Article CAS PubMed PubMed Central Google Scholar
Elliott, A. G., Merenbloom, S. I., Chakrabarty, S. & Williams, E. R. Single particle analyzer of mass: a charge detection mass spectrometer with a multi-detector electrostatic ion trap. Int. J. Mass Spectrom. 414, 45–55 (2017).
Article CAS PubMed PubMed Central Google Scholar
Hogan, J. A. & Jarrold, M. F. Optimized electrostatic linear ion trap for charge detection mass spectrometry. J. Am. Soc. Mass Spectrom. 29, 2086–2095 (2018).
Article CAS PubMed Google Scholar
Aksenov, A. A. & Bier, M. E. The analysis of polystyrene and polystyrene aggregates into the mega dalton mass range by cryodetection MALDI TOF MS. J. Am. Soc. Mass Spectrom. 19, 219–230 (2008).
Article CAS PubMed Google Scholar
Frank, M., Labov, S. E., Westmacott, G. & Benner, W. H. Energy-sensitive cryogenic detectors for high-mass biomolecule mass spectrometry. Mass Spectrom. Rev. 18, 155–186 (1999).
Article CAS PubMed Google Scholar
Wenzel, R. J., Matter, U., Schultheis, L. & Zenobi, R. Analysis of megadalton ions using cryodetection MALDI time-of-flight mass spectrometry. Anal. Chem. 77, 4329–4337 (2005).
Article CAS PubMed Google Scholar
Kafader, J. O. et al. Individual ion mass spectrometry enhances the sensitivity and sequence coverage of top-down mass spectrometry. J. Proteome Res. 19, 1346–1350 (2020).
Article CAS PubMed PubMed Central Google Scholar
Melani, R. D. et al. Next-generation serology by mass spectrometry: readout of the SARS-CoV-2 antibody repertoire. J. Proteome Res. 21, 274–288 (2022).
Article CAS PubMed Google Scholar
Stiving, A. Q. et al. Dissecting the heterogeneous glycan profiles of recombinant coronavirus spike proteins with individual ion mass spectrometry. J. Am. Soc. Mass Spectrom. 35, 62–73 (2024).
Article CAS PubMed Google Scholar
Forte, E. et al. Divergent antibody repertoires found for Omicron versus Wuhan SARS-CoV-2 strains using Ig-MS. J. Proteome Res. 21, 2987–2997 (2022).
Article CAS PubMed PubMed Central Google Scholar
Drown, B. S. et al. Precise readout of MEK1 proteoforms upon MAPK pathway modulation by individual ion mass spectrometry. Anal. Chem. 96, 4455–4462 (2024).
Article CAS PubMed Google Scholar
Su, P. et al. Top-down proteomics of 10,000 single brain cells. Preprint at https://www.biorxiv.org/content/10.1101/2023.05.31.543176v1 (2023).
Su, P. et al. Single cell analysis of proteoforms. J. Proteome Res. 23, 1883–1893 (2024).
Article CAS PubMed Google Scholar
Su, P. et al. Highly multiplexed, label-free proteoform imaging of tissues by individual ion mass spectrometry. Sci. Adv. 8, eabp9929 (2022).
Article CAS PubMed PubMed Central Google Scholar
McGee, J. P. et al. Automated imaging and identification of proteoforms directly from ovarian cancer tissue. Nat. Commun. 14, 6478 (2023).
Article CAS PubMed PubMed Central Google Scholar
Kafader, J. O. et al. Measurement of individual ions sharply increases the resolution of Orbitrap mass spectra of proteins. Anal. Chem. 91, 2776–2783 (2019).
Article CAS PubMed Google Scholar
Perry, R. H., Cooks, R. G. & Noll, R. J. Orbitrap mass spectrometry: instrumentation, ion motion and applications. Mass Spectrom. Rev. 27, 661–699 (2008).
Article CAS PubMed Google Scholar
Zubarev, R. A. & Makarov, A. Orbitrap mass spectrometry. Anal. Chem. 85, 5288–5296 (2013).
Article CAS PubMed Google Scholar
Hu, Q. et al. The Orbitrap: a new mass spectrometer. J. Mass Spectrom. 40, 430–443 (2005).
Article CAS PubMed Google Scholar
Kafader, J. O. et al. STORI plots enable accurate tracking of individual ion signals. J. Am. Soc. Mass Spectrom. 30, 2200–2203 (2019).
Article CAS PubMed PubMed Central Google Scholar
Bruins, A. P. Mechanistic aspects of electrospray ionization. J. Chromatogr. A 794, 345–357 (1998).
Schachner, L. F. et al. Standard proteoforms and their complexes for native mass spectrometry. J. Am. Soc. Mass Spectrom. 30, 1190–1198 (2019).
Article CAS PubMed PubMed Central Google Scholar
Jooß, K., McGee, J. P., Melani, R. D. & Kelleher, N. L. Standard procedures for native CZE-MS of proteins and protein complexes up to 800 kDa. Electrophoresis 42, 1050–1059 (2021).
Article PubMed PubMed Central Google Scholar
McGee, J. P. et al. Isotopic resolution of protein complexes up to 466 kDa using individual ion mass spectrometry. Anal. Chem. 93, 2723–2727 (2021).
留言 (0)