Ibba, M. & Soll, D. Aminoacyl-tRNA synthesis. Annu. Rev. Biochem. 69, 617–650 (2000).
Article CAS PubMed Google Scholar
Griffin, B. E., Jarman, M., Reese, C. B., Sulston, J. E. & Trentham, D. R. Some observations relating to acyl mobility in aminoacyl soluble ribonucleic acids*. Biochemistry 5, 3638–3649 (1966).
Gomez, M. A. R. & Ibba, M. Aminoacyl-tRNA synthetases. RNA 26, 910–936 (2020).
Park, S. G., Schimmel, P. & Kim, S. Aminoacyl tRNA synthetases and their connections to disease. Proc. Natl Acad. Sci. USA 105, 11043–11049 (2008).
Article CAS PubMed PubMed Central Google Scholar
Moutiez, M., Belin, P. & Gondry, M. Aminoacyl-tRNA-utilizing enzymes in natural product biosynthesis. Chem. Rev. 117, 5578–5618 (2017).
Article CAS PubMed Google Scholar
Wang, L., Xie, J. & Schultz, P. G. Expanding the genetic code. Annu. Rev. Biophys. Biomol. Struct. 35, 225–249 (2006).
Chin, J. W. Expanding and reprogramming the genetic code. Nature 550, 53–60 (2017).
Article CAS PubMed Google Scholar
Fujino, T., Goto, Y., Suga, H. & Murakami, H. Ribosomal synthesis of peptides with multiple β-amino acids. J. Am. Chem. Soc. 138, 1962–1969 (2016).
Article CAS PubMed Google Scholar
Katoh, T. & Suga, H. Ribosomal incorporation of consecutive β-amino acids. J. Am. Chem. Soc. 140, 12159–12167 (2018).
Article CAS PubMed Google Scholar
Adaligil, E., Song, A., Hallenbeck, K. K., Cunningham, C. N. & Fairbrother, W. J. Ribosomal synthesis of macrocyclic peptides with β2- and β2,3-homo-amino acids for the development of natural product-like combinatorial libraries. ACS Chem. Biol. 16, 1011–1018 (2021).
Article CAS PubMed Google Scholar
Katoh, T., Sengoku, T., Hirata, K., Ogata, K. & Suga, H. Ribosomal synthesis and de novo discovery of bioactive foldamer peptides containing cyclic β-amino acids. Nat. Chem. 12, 1081–1088 (2020).
Article CAS PubMed Google Scholar
Adaligil, E., Song, A., Cunningham, C. N. & Fairbrother, W. J. Ribosomal synthesis of macrocyclic peptides with linear γ4- and β-hydroxy-γ4-amino acids. ACS Chem. Biol. 16, 1325–1331 (2021).
Article CAS PubMed Google Scholar
Katoh, T. & Suga, H. Ribosomal elongation of cyclic γ-amino acids using a reprogrammed genetic code. J. Am. Chem. Soc. 142, 4965–4969 (2020).
Article CAS PubMed Google Scholar
Katoh, T. & Suga, H. Ribosomal elongation of aminobenzoic acid derivatives. J. Am. Chem. Soc. 142, 16518–16522 (2020).
Article CAS PubMed Google Scholar
Ad, O. et al. Translation of diverse aramid- and 1,3-dicarbonyl-peptides by wild type ribosomes in vitro. ACS Cent. Sci. 5, 1289–1294 (2019).
Article CAS PubMed PubMed Central Google Scholar
Guo, J., Wang, J., Anderson, J. C. & Schultz, P. G. Addition of an α‐hydroxy acid to the genetic code of bacteria. Angew. Chem. Int. Ed. Engl. 47, 722–725 (2008).
Article CAS PubMed Google Scholar
Kobayashi, T., Yanagisawa, T., Sakamoto, K. & Yokoyama, S. Recognition of non-α-amino substrates by pyrrolysyl-tRNA synthetase. J. Mol. Biol. 385, 1352–1360 (2009).
Article CAS PubMed Google Scholar
Li, Y.-M. et al. Ligation of expressed protein α-hydrazides via genetic incorporation of an α-hydroxy acid. ACS Chem. Biol. 7, 1015–1022 (2012).
Article CAS PubMed Google Scholar
Spinck, M. et al. Genetically programmed cell-based synthesis of non-natural peptide and depsipeptide macrocycles. Nat. Chem. 15, 61–69 (2023).
Article CAS PubMed Google Scholar
Bindman, N. A., Bobeica, S. C., Liu, W. R. & van der Donk, W. A. Facile removal of leader peptides from lanthipeptides by incorporation of a hydroxy acid. J. Am. Chem. Soc. 137, 6975–6978 (2015).
Article CAS PubMed PubMed Central Google Scholar
Takatsuji, R. et al. Ribosomal synthesis of backbone-cyclic peptides compatible with in vitro display. J. Am. Chem. Soc. 141, 2279–2287 (2019).
Article CAS PubMed Google Scholar
Katoh, T. & Suga, H. Consecutive ribosomal incorporation of α-aminoxy/α-hydrazino acids with l/d-configurations into nascent peptide chains. J. Am. Chem. Soc. 143, 18844–18848 (2021).
Article CAS PubMed Google Scholar
Goto, Y., Katoh, T. & Suga, H. Flexizymes for genetic code reprogramming. Nat. Protoc. 6, 779–790 (2011).
Article CAS PubMed Google Scholar
Kwon, D. How scientists are hacking the genetic code to give proteins new powers. Nature 618, 874–876 (2023).
Article CAS PubMed Google Scholar
Johnson, R. Synthetases for unnatural sequences. Nat. Chem. Biol. 19, 791–791 (2023).
Article CAS PubMed Google Scholar
Schepartz, A. et al. Backbone extension acyl rearrangements enable cellular synthesis of proteins with internal β2-peptide linkages. Preprint at https://www.biorxiv.org/content/10.1101/2023.10.03.560714v1 (2023).
Liu, C. C. & Schultz, P. G. Adding new chemistries to the genetic code. Annu. Rev. Biochem. 79, 413–444 (2010).
Article CAS PubMed Google Scholar
Kavaliauskas, D., Nissen, P. & Knudsen, C. R. The busiest of all ribosomal assistants: elongation factor Tu. Biochemistry 51, 2642–2651 (2012).
Article CAS PubMed Google Scholar
Cruz-Navarrete, F. A. et al. β-amino acids reduce ternary complex stability and alter the translation elongation mechanism. ACS Cent. Sci. 10, 1262–1275 (2024).
Article CAS PubMed PubMed Central Google Scholar
Watson, Z. L. et al. Atomistic simulations of the Escherichia coli ribosome provide selection criteria for translationally active substrates. Nat. Chem. 15, 913–921 (2023).
Article CAS PubMed PubMed Central Google Scholar
Fricke, R. et al. Expanding the substrate scope of pyrrolysyl-transfer RNA synthetase enzymes to include non-α-amino acids in vitro and in vivo. Nat. Chem. 15, 960–971 (2023).
Article CAS PubMed PubMed Central Google Scholar
Hamlish, N. X., Abramyan, A. M., Shah, B., Zhang, Z. & Schepartz, A. Incorporation of multiple β2-hydroxy acids into a protein in vivo using an orthogonal aminoacyl-tRNA synthetase. ACS Cent. Sci. 10, 1044–1053 (2024).
留言 (0)