NG-497 Alleviates Microglia-Mediated Neuroinflammation in a MTNR1A-Dependent Manner

Madore, C., et al. 2020. Microglia, lifestyle stress, and neurodegeneration. Immunity 52 (2): 222–240. https://doi.org/10.1016/j.immuni.2019.12.003.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Woodburn, S.C., J.L. Bollinger, and E.S. Wohleb. 2021. The semantics of microglia activation: Neuroinflammation, homeostasis, and stress. Journal of Neuroinflammation 18 (1): 258. https://doi.org/10.1186/s12974-021-02309-6.

Article  PubMed  PubMed Central  Google Scholar 

Pereira-Dutra, F.S., and P.T. Bozza. 2021. Lipid droplets diversity and functions in inflammation and immune response. Expert Review of Proteomics 18 (9): 809–825. https://doi.org/10.1080/14789450.2021.1995356.

Article  CAS  PubMed  Google Scholar 

Zhang, W., et al. 2021. Lipid droplets, the central hub integrating cell metabolism and the immune system. Frontiers in Physiology 12: 746749. https://doi.org/10.3389/fphys.2021.746749.

Article  PubMed  PubMed Central  Google Scholar 

Li, H., et al. 2023. Pharmacological upregulation of microglial lipid droplet alleviates neuroinflammation and acute ischemic brain injury. Inflammation 46 (5): 1832–1848. https://doi.org/10.1007/s10753-023-01844-z.

Article  CAS  PubMed  Google Scholar 

Schweiger, M., et al. 2017. Pharmacological inhibition of adipose triglyceride lipase corrects high-fat diet-induced insulin resistance and hepatosteatosis in mice. Nature Communications 8: 14859. https://doi.org/10.1038/ncomms14859.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grabner, G.F., et al. 2022. Small-molecule inhibitors targeting lipolysis in human adipocytes. Journal of the American Chemical Society 144 (14): 6237–6250. https://doi.org/10.1021/jacs.1c10836.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Farmer, B.C., et al. 2020. Lipid droplets in neurodegenerative disorders. Frontiers in Neuroscience 14: 742. https://doi.org/10.3389/fnins.2020.00742.

Article  PubMed  PubMed Central  Google Scholar 

Bosch, M., et al. 2020. Mammalian lipid droplets are innate immune hubs integrating cell metabolism and host defense. Science 370 (6514): eaay8085. https://doi.org/10.1126/science.aay8085.

Article  CAS  PubMed  Google Scholar 

Gu, C., et al. 2021. Microglial MT1 activation inhibits LPS-induced neuroinflammation via regulation of metabolic reprogramming. Aging Cell 20 (6): e13375. https://doi.org/10.1111/acel.13375.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qiu, X., et al. 2022. Melatonin reverses tumor necrosis factor-alpha-induced metabolic disturbance of human nucleus pulposus cells via MTNR1B/Galphai2/YAP signaling. International Journal of Biological Sciences 18 (5): 2202–2219. https://doi.org/10.7150/ijbs.65973.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Izuhara, M., et al. 2021. Prompt improvement of difficulty with sleep initiation and waking up in the morning and daytime somnolence by combination therapy of suvorexant and ramelteon in delayed sleep-wake phase disorder: A case series of three patients. Sleep Medicine 80: 100–104. https://doi.org/10.1016/j.sleep.2021.01.030.

Article  PubMed  Google Scholar 

Kato, K., et al. 2005. Neurochemical properties of ramelteon (TAK-375), a selective MT1/MT2 receptor agonist. Neuropharmacology 48 (2): 301–310. https://doi.org/10.1016/j.neuropharm.2004.09.007.

Article  CAS  PubMed  Google Scholar 

Giulian, D., and T.J. Baker. 1986. Characterization of ameboid microglia isolated from developing mammalian brain. Journal of Neuroscience 6 (8): 2163–2178. https://doi.org/10.1523/JNEUROSCI.06-08-02163.1986.

Article  CAS  PubMed  Google Scholar 

Cao, S.Y., et al. 2017. Enhanced derivation of human pluripotent stem cell-derived cortical glutamatergic neurons by a small molecule. Science and Reports 7 (1): 3282. https://doi.org/10.1038/s41598-017-03519-w.

Article  CAS  Google Scholar 

Takahara, S., et al. 2021. Inhibition of ATGL in adipose tissue ameliorates isoproterenol-induced cardiac remodeling by reducing adipose tissue inflammation. American Journal of Physiology. Heart and Circulatory Physiology 320 (1): H432–H446. https://doi.org/10.1152/ajpheart.00737.2020.

Article  CAS  PubMed  Google Scholar 

Li, Y., et al. 2024. Microglial lipid droplet accumulation in tauopathy brain is regulated by neuronal AMPK. Cell Metabolism 36 (6): 1351-1370 e8. https://doi.org/10.1016/j.cmet.2024.03.014.

Article  CAS  PubMed  Google Scholar 

Schlager, S., et al. 2015. Adipose triglyceride lipase acts on neutrophil lipid droplets to regulate substrate availability for lipid mediator synthesis. Journal of Leukocyte Biology 98 (5): 837–850. https://doi.org/10.1189/jlb.3A0515-206R.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schweiger, M., et al. 2006. Adipose triglyceride lipase and hormone-sensitive lipase are the major enzymes in adipose tissue triacylglycerol catabolism. Journal of Biological Chemistry 281 (52): 40236–40241. https://doi.org/10.1074/jbc.M608048200.

Article  CAS  PubMed  Google Scholar 

Grabner, G.F., et al. 2021. Lipolysis: Cellular mechanisms for lipid mobilization from fat stores. Nature Metabolism 3 (11): 1445–1465. https://doi.org/10.1038/s42255-021-00493-6.

Article  CAS  PubMed  Google Scholar 

van Dierendonck, X., et al. 2022. Triglyceride breakdown from lipid droplets regulates the inflammatory response in macrophages. Proc Natl Acad Sci U S A 119 (12): e2114739119. https://doi.org/10.1073/pnas.2114739119.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, W., et al. 2024. Adipose triglyceride lipase suppresses noncanonical inflammasome by hydrolyzing LPS. Nature Chemical Biology. https://doi.org/10.1038/s41589-024-01569-6.

Article  PubMed  PubMed Central  Google Scholar 

Aflaki, E., et al. 2011. Impaired Rho GTPase activation abrogates cell polarization and migration in macrophages with defective lipolysis. Cellular and Molecular Life Sciences 68 (23): 3933–3947. https://doi.org/10.1007/s00018-011-0688-4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Su, S.C., et al. 2017. Cancer metastasis: Mechanisms of inhibition by melatonin. Journal of Pineal Research 62(1). https://doi.org/10.1111/jpi.12370

Foster, R.G. 2021. Melatonin. Current Biology 31 (22): R1456–R1458. https://doi.org/10.1016/j.cub.2021.10.029.

Article  CAS  PubMed  Google Scholar 

Gobbi, G., and S. Comai. 2019. Differential function of melatonin MT(1) and MT(2) receptors in REM and NREM sleep. Front Endocrinol (Lausanne) 10: 87. https://doi.org/10.3389/fendo.2019.00087.

Article  PubMed  Google Scholar 

Ali, T., et al. 2020. Melatonin prevents neuroinflammation and relieves depression by attenuating autophagy impairment through FOXO3a regulation. Journal of Pineal Research 69 (2): e12667. https://doi.org/10.1111/jpi.12667.

Article  CAS  PubMed  Google Scholar 

Won, E., K.S. Na, and Y.K. Kim. 2021. Associations between Melatonin, Neuroinflammation, and Brain Alterations in Depression. International Journal of Molecular Sciences 23 (1): 305. https://doi.org/10.3390/ijms23010305.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guo, S.N., et al. 2024. Melatonin regulates circadian clock proteins expression in allergic airway inflammation. Hel

留言 (0)

沒有登入
gif