Madore, C., et al. 2020. Microglia, lifestyle stress, and neurodegeneration. Immunity 52 (2): 222–240. https://doi.org/10.1016/j.immuni.2019.12.003.
Article CAS PubMed PubMed Central Google Scholar
Woodburn, S.C., J.L. Bollinger, and E.S. Wohleb. 2021. The semantics of microglia activation: Neuroinflammation, homeostasis, and stress. Journal of Neuroinflammation 18 (1): 258. https://doi.org/10.1186/s12974-021-02309-6.
Article PubMed PubMed Central Google Scholar
Pereira-Dutra, F.S., and P.T. Bozza. 2021. Lipid droplets diversity and functions in inflammation and immune response. Expert Review of Proteomics 18 (9): 809–825. https://doi.org/10.1080/14789450.2021.1995356.
Article CAS PubMed Google Scholar
Zhang, W., et al. 2021. Lipid droplets, the central hub integrating cell metabolism and the immune system. Frontiers in Physiology 12: 746749. https://doi.org/10.3389/fphys.2021.746749.
Article PubMed PubMed Central Google Scholar
Li, H., et al. 2023. Pharmacological upregulation of microglial lipid droplet alleviates neuroinflammation and acute ischemic brain injury. Inflammation 46 (5): 1832–1848. https://doi.org/10.1007/s10753-023-01844-z.
Article CAS PubMed Google Scholar
Schweiger, M., et al. 2017. Pharmacological inhibition of adipose triglyceride lipase corrects high-fat diet-induced insulin resistance and hepatosteatosis in mice. Nature Communications 8: 14859. https://doi.org/10.1038/ncomms14859.
Article CAS PubMed PubMed Central Google Scholar
Grabner, G.F., et al. 2022. Small-molecule inhibitors targeting lipolysis in human adipocytes. Journal of the American Chemical Society 144 (14): 6237–6250. https://doi.org/10.1021/jacs.1c10836.
Article CAS PubMed PubMed Central Google Scholar
Farmer, B.C., et al. 2020. Lipid droplets in neurodegenerative disorders. Frontiers in Neuroscience 14: 742. https://doi.org/10.3389/fnins.2020.00742.
Article PubMed PubMed Central Google Scholar
Bosch, M., et al. 2020. Mammalian lipid droplets are innate immune hubs integrating cell metabolism and host defense. Science 370 (6514): eaay8085. https://doi.org/10.1126/science.aay8085.
Article CAS PubMed Google Scholar
Gu, C., et al. 2021. Microglial MT1 activation inhibits LPS-induced neuroinflammation via regulation of metabolic reprogramming. Aging Cell 20 (6): e13375. https://doi.org/10.1111/acel.13375.
Article CAS PubMed PubMed Central Google Scholar
Qiu, X., et al. 2022. Melatonin reverses tumor necrosis factor-alpha-induced metabolic disturbance of human nucleus pulposus cells via MTNR1B/Galphai2/YAP signaling. International Journal of Biological Sciences 18 (5): 2202–2219. https://doi.org/10.7150/ijbs.65973.
Article CAS PubMed PubMed Central Google Scholar
Izuhara, M., et al. 2021. Prompt improvement of difficulty with sleep initiation and waking up in the morning and daytime somnolence by combination therapy of suvorexant and ramelteon in delayed sleep-wake phase disorder: A case series of three patients. Sleep Medicine 80: 100–104. https://doi.org/10.1016/j.sleep.2021.01.030.
Kato, K., et al. 2005. Neurochemical properties of ramelteon (TAK-375), a selective MT1/MT2 receptor agonist. Neuropharmacology 48 (2): 301–310. https://doi.org/10.1016/j.neuropharm.2004.09.007.
Article CAS PubMed Google Scholar
Giulian, D., and T.J. Baker. 1986. Characterization of ameboid microglia isolated from developing mammalian brain. Journal of Neuroscience 6 (8): 2163–2178. https://doi.org/10.1523/JNEUROSCI.06-08-02163.1986.
Article CAS PubMed Google Scholar
Cao, S.Y., et al. 2017. Enhanced derivation of human pluripotent stem cell-derived cortical glutamatergic neurons by a small molecule. Science and Reports 7 (1): 3282. https://doi.org/10.1038/s41598-017-03519-w.
Takahara, S., et al. 2021. Inhibition of ATGL in adipose tissue ameliorates isoproterenol-induced cardiac remodeling by reducing adipose tissue inflammation. American Journal of Physiology. Heart and Circulatory Physiology 320 (1): H432–H446. https://doi.org/10.1152/ajpheart.00737.2020.
Article CAS PubMed Google Scholar
Li, Y., et al. 2024. Microglial lipid droplet accumulation in tauopathy brain is regulated by neuronal AMPK. Cell Metabolism 36 (6): 1351-1370 e8. https://doi.org/10.1016/j.cmet.2024.03.014.
Article CAS PubMed Google Scholar
Schlager, S., et al. 2015. Adipose triglyceride lipase acts on neutrophil lipid droplets to regulate substrate availability for lipid mediator synthesis. Journal of Leukocyte Biology 98 (5): 837–850. https://doi.org/10.1189/jlb.3A0515-206R.
Article CAS PubMed PubMed Central Google Scholar
Schweiger, M., et al. 2006. Adipose triglyceride lipase and hormone-sensitive lipase are the major enzymes in adipose tissue triacylglycerol catabolism. Journal of Biological Chemistry 281 (52): 40236–40241. https://doi.org/10.1074/jbc.M608048200.
Article CAS PubMed Google Scholar
Grabner, G.F., et al. 2021. Lipolysis: Cellular mechanisms for lipid mobilization from fat stores. Nature Metabolism 3 (11): 1445–1465. https://doi.org/10.1038/s42255-021-00493-6.
Article CAS PubMed Google Scholar
van Dierendonck, X., et al. 2022. Triglyceride breakdown from lipid droplets regulates the inflammatory response in macrophages. Proc Natl Acad Sci U S A 119 (12): e2114739119. https://doi.org/10.1073/pnas.2114739119.
Article CAS PubMed PubMed Central Google Scholar
Li, W., et al. 2024. Adipose triglyceride lipase suppresses noncanonical inflammasome by hydrolyzing LPS. Nature Chemical Biology. https://doi.org/10.1038/s41589-024-01569-6.
Article PubMed PubMed Central Google Scholar
Aflaki, E., et al. 2011. Impaired Rho GTPase activation abrogates cell polarization and migration in macrophages with defective lipolysis. Cellular and Molecular Life Sciences 68 (23): 3933–3947. https://doi.org/10.1007/s00018-011-0688-4.
Article CAS PubMed PubMed Central Google Scholar
Su, S.C., et al. 2017. Cancer metastasis: Mechanisms of inhibition by melatonin. Journal of Pineal Research 62(1). https://doi.org/10.1111/jpi.12370
Foster, R.G. 2021. Melatonin. Current Biology 31 (22): R1456–R1458. https://doi.org/10.1016/j.cub.2021.10.029.
Article CAS PubMed Google Scholar
Gobbi, G., and S. Comai. 2019. Differential function of melatonin MT(1) and MT(2) receptors in REM and NREM sleep. Front Endocrinol (Lausanne) 10: 87. https://doi.org/10.3389/fendo.2019.00087.
Ali, T., et al. 2020. Melatonin prevents neuroinflammation and relieves depression by attenuating autophagy impairment through FOXO3a regulation. Journal of Pineal Research 69 (2): e12667. https://doi.org/10.1111/jpi.12667.
Article CAS PubMed Google Scholar
Won, E., K.S. Na, and Y.K. Kim. 2021. Associations between Melatonin, Neuroinflammation, and Brain Alterations in Depression. International Journal of Molecular Sciences 23 (1): 305. https://doi.org/10.3390/ijms23010305.
Article CAS PubMed PubMed Central Google Scholar
Guo, S.N., et al. 2024. Melatonin regulates circadian clock proteins expression in allergic airway inflammation. Hel
留言 (0)