Sustained Vascular Inflammatory Effects of SARS-CoV-2 Spike Protein on Human Endothelial Cells

Teuwen, L.-A., V. Geldhof, A. Pasut, and P. Carmeliet. 2020. COVID-19: The vasculature unleashed. Nature Reviews Immunology 20 (7): 389–391. https://doi.org/10.1038/s41577-020-0343-0.

Article  PubMed  PubMed Central  Google Scholar 

Kadosh, B.S., et al. 2020. COVID-19 and the Heart and Vasculature: Novel Approaches to Reduce Virus-Induced Inflammation in Patients With Cardiovascular Disease. Arteriosclerosis, Thrombosis, and Vascular Biology 40 (9): 2045–2053. https://doi.org/10.1161/ATVBAHA.120.314513.

Article  PubMed  PubMed Central  Google Scholar 

Chung, M.K., et al. 2021. COVID-19 and Cardiovascular Disease: From Bench to Bedside. Circulation Research 128 (8): 1214–1236. https://doi.org/10.1161/CIRCRESAHA.121.317997.

Article  PubMed  PubMed Central  Google Scholar 

Ackermann, M., et al. 2020. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. New England Journal of Medicine 383 (2): 120–128. https://doi.org/10.1056/NEJMoa2015432.

Article  PubMed  Google Scholar 

Bradley, B.T., et al. 2020. Histopathology and ultrastructural findings of fatal COVID-19 infections in Washington State: A case series. The Lancet 396 (10247): 320–332. https://doi.org/10.1016/S0140-6736(20)31305-2.

Article  Google Scholar 

Perico, L., A. Benigni, and G. Remuzzi. 2024. SARS-CoV-2 and the spike protein in endotheliopathy. Trends in Microbiology 32 (1): 53–67. https://doi.org/10.1016/j.tim.2023.06.004.

Article  PubMed  Google Scholar 

Wenzel, J., and M. Schwaninger. 2022. How COVID-19 affects microvessels in the brain. Brain 145 (7): 2242–2244. https://doi.org/10.1093/brain/awac211.

Article  PubMed  PubMed Central  Google Scholar 

Hansrivijit, P., et al. 2020. Incidence of Acute Kidney Injury and Its Association with Mortality in Patients with Covid-19: A Meta-Analysis. Journal of Investigative Medicine 68 (7): 1261–1270. https://doi.org/10.1136/jim-2020-001407.

Article  PubMed  Google Scholar 

Varga, Z., et al. 2020. Endothelial cell infection and endotheliitis in COVID-19. The Lancet 395 (10234): 1417–1418. https://doi.org/10.1016/S0140-6736(20)30937-5.

Article  Google Scholar 

Buzhdygan, T.P., et al. 2020. The SARS-CoV-2 spike protein alters barrier function in 2D static and 3D microfluidic in-vitro models of the human blood–brain barrier. Neurobiology of Diseases 146: 105131. https://doi.org/10.1016/j.nbd.2020.105131.

Article  Google Scholar 

Guan, W., W. Liang, J. He, and N. Zhong. 2020. Cardiovascular comorbidity and its impact on patients with COVID-19. European Respiratory Journal 55 (6): 2001227. https://doi.org/10.1183/13993003.01227-2020.

Article  PubMed  Google Scholar 

Vrints, C.J.M., K.A. Krychtiuk, E.M. Van Craenenbroeck, V.F. Segers, S. Price, and H. Heidbuchel. 2021. Endothelialitis plays a central role in the pathophysiology of severe COVID-19 and its cardiovascular complications. Acta Cardiologica 76 (2): 109–124. https://doi.org/10.1080/00015385.2020.1846921.

Article  PubMed  Google Scholar 

Schimmel, L., et al. 2021. Endothelial cells are not productively infected by SARS-CoV-2. Clin. Transl. Immunol. 10 (10): e1350. https://doi.org/10.1002/cti2.1350.

Article  Google Scholar 

Yang, R.-C., et al. 2022. SARS-CoV-2 productively infects human brain microvascular endothelial cells. Journal of Neuroinflammation 19 (1): 149. https://doi.org/10.1186/s12974-022-02514-x.

Article  PubMed  PubMed Central  Google Scholar 

Klouda, T., et al. 2022. Interferon-alpha or -beta facilitates SARS-CoV-2 pulmonary vascular infection by inducing ACE2. Angiogenesis 25 (2): 225–240. https://doi.org/10.1007/s10456-021-09823-4.

Article  PubMed  Google Scholar 

McCracken, I.R., et al. 2021. Lack of Evidence of Angiotensin-Converting Enzyme 2 Expression and Replicative Infection by SARS-CoV-2 in Human Endothelial Cells. Circulation 143 (8): 865–868. https://doi.org/10.1161/CIRCULATIONAHA.120.052824.

Article  PubMed  PubMed Central  Google Scholar 

Letarov, A.V., V.V. Babenko, and E.E. Kulikov. 2021. Free SARS-CoV-2 Spike Protein S1 Particles May Play a Role in the Pathogenesis of COVID-19 Infection. Biochemistry (Moscow) 86 (3): 257–261. https://doi.org/10.1134/S0006297921030032.

Article  PubMed  Google Scholar 

Biering, S.B., et al. 2022. SARS-CoV-2 Spike triggers barrier dysfunction and vascular leak via integrins and TGF-β signaling. Nature Communications 13 (1): 7630. https://doi.org/10.1038/s41467-022-34910-5.

Article  PubMed  PubMed Central  Google Scholar 

Nuovo, G.J., et al. 2021. Endothelial cell damage is the central part of COVID-19 and a mouse model induced by injection of the S1 subunit of the spike protein. Annals of Diagnostic Pathology 51: 151682. https://doi.org/10.1016/j.anndiagpath.2020.151682.

Article  PubMed  Google Scholar 

Colunga Biancatelli, R.M.L., P.A. Solopov, E.R. Sharlow, J.S. Lazo, P.E. Marik, and J.D. Catravas. 2021. The SARS-CoV-2 spike protein subunit S1 induces COVID-19-like acute lung injury in Κ18-hACE2 transgenic mice and barrier dysfunction in human endothelial cells. American Journal of Physiology-Lung Cellular and Molecular Physiology 321 (2): 477–484. https://doi.org/10.1152/ajplung.00223.2021.

Article  Google Scholar 

Qin, Z., et al. 2021. Endothelial cell infection and dysfunction, immune activation in severe COVID-19. Theranostics 11 (16): 8076–8091. https://doi.org/10.7150/thno.61810.

Article  PubMed  PubMed Central  Google Scholar 

Lei, Y., et al. 2021. SARS-CoV-2 Spike Protein Impairs Endothelial Function via Downregulation of ACE 2. Circulation Research 128 (9): 1323–1326. https://doi.org/10.1161/CIRCRESAHA.121.318902.

Article  PubMed  PubMed Central  Google Scholar 

Fajnzylber, J., et al. 2020. SARS-CoV-2 viral load is associated with increased disease severity and mortality. Nature Communications 11 (1): 5493. https://doi.org/10.1038/s41467-020-19057-5.

Article  PubMed  PubMed Central  Google Scholar 

De Michele, M., et al. 2022. Evidence of SARS-CoV-2 spike protein on retrieved thrombi from COVID-19 patients. Journal of Hematology & Oncology 15 (1): 108. https://doi.org/10.1186/s13045-022-01329-w.

Article  Google Scholar 

Brady, M., et al. 2021. Spike protein multiorgan tropism suppressed by antibodies targeting SARS-CoV-2. Commun. Biol. 4 (1): 1318. https://doi.org/10.1038/s42003-021-02856-x.

Article  PubMed  PubMed Central  Google Scholar 

Oudit, G.Y., K. Wang, A. Viveiros, M.J. Kellner, and J.M. Penninger. 2023. Angiotensin-converting enzyme 2—at the heart of the COVID-19 pandemic. Cell 186 (5): 906–922. https://doi.org/10.1016/j.cell.2023.01.039.

Article  PubMed  Google Scholar 

Simons, P., et al. 2021. Integrin activation is an essential component of SARS-CoV-2 infection. Science and Reports 11 (1): 20398. https://doi.org/10.1038/s41598-021-99893-7.

Article  Google Scholar 

Nader, D., and S.W. Kerrigan. 2022. Molecular Cross-Talk between Integrins and Cadherins Leads to a Loss of Vascular Barrier Integrity during SARS-CoV-2 Infection. Viruses 14 (5): 891. https://doi.org/10.3390/v14050891.

Article  PubMed  PubMed Central  Google Scholar 

Robles, J.P., M. Zamora, E. Adan-Castro, L. Siqueiros-Marquez, G. Martinez de la Escalera, and C. Clapp. 2022. The spike protein of SARS-CoV-2 induces endothelial inflammation through integrin α5β1 and NF-κB signaling. Journal of Biological Chemistry 298 (3): 101695. https://doi.org/10.1016/j.jbc.2022.101695.

Article  PubMed  PubMed Central  Google Scholar 

Khalil, B.A., N.M. Elemam, and A.A. Maghazachi. 2021. Chemokines and chemokine receptors during COVID-19 infection. Computational and Structural Biotechnology Journal 19: 976–988. https://doi.org/10.1016/j.csbj.2021.01.034.

Article  PubMed  PubMed Central  Google Scholar 

Hue, S., et al. 2020. Uncontrolled Innate and Impaired Adaptive Immune Responses in Patients with COVID-19 Acute Respiratory Distress Syndrome. American Journal of Respiratory and Critical Care Medicine 202 (11): 1509–1519. https://doi.org/10.1164/rccm.202005-1885OC.

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif