Gupta, S., M. Dominguez, and L. Golestaneh. 2023. Diabetic Kidney Disease: An Update. Medical Clinics of North America 107 (4): 689–705. https://doi.org/10.1016/j.mcna.2023.03.004.
Sheka, A.C., O. Adeyi, J. Thompson, B. Hameed, P.A. Crawford, and S. Ikramuddin. 2020. Nonalcoholic Steatohepatitis: A Review. Jama 323 (12): 1175–1183. https://doi.org/10.1001/jama.2020.2298.
de Boer, I.H., K. Khunti, T. Sadusky, K.R. Tuttle, J.J. Neumiller, C.M. Rhee, S.E. Rosas, P. Rossing, and G. Bakris. 2022. Diabetes Management in Chronic Kidney Disease: A Consensus Report by the American Diabetes Association (ADA) and Kidney Disease: Improving Global Outcomes (KDIGO). Diabetes Care 45 (12): 3075–3090. https://doi.org/10.2337/dci22-0027.
Article PubMed PubMed Central Google Scholar
Liu, B.C., T.T. Tang, L.L. Lv, and H.Y. Lan. 2018. Renal tubule injury: A driving force toward chronic kidney disease. Kidney International 93 (3): 568–579. https://doi.org/10.1016/j.kint.2017.09.033.
Opazo-Ríos L, Mas S, Marín-Royo G, Mezzano S, Gómez-Guerrero C, Moreno JA, Egido J (2020) Lipotoxicity and Diabetic Nephropathy: Novel Mechanistic Insights and Therapeutic Opportunities. Int J Mol Sci 21 (7). https://doi.org/10.3390/ijms21072632
Dahlby T, Simon C, Backe MB, Dahllöf MS, Holson E, Wagner BK, Böni-Schnetzler M, Marzec MT, Lundh M, Mandrup-Poulsen T (2020) Enhancer of Zeste Homolog 2 (EZH2) Mediates Glucolipotoxicity-Induced Apoptosis in β-Cells. Int J Mol Sci 21 (21). https://doi.org/10.3390/ijms21218016
An, Y., B.T. Xu, S.R. Wan, X.M. Ma, Y. Long, Y. Xu, and Z.Z. Jiang. 2023. The role of oxidative stress in diabetes mellitus-induced vascular endothelial dysfunction. Cardiovascular Diabetology 22 (1): 237. https://doi.org/10.1186/s12933-023-01965-7.
Article PubMed PubMed Central Google Scholar
Louiselle, A.E., S.M. Niemiec, C. Zgheib, and K.W. Liechty. 2021. Macrophage polarization and diabetic wound healing. Translational Research 236: 109–116. https://doi.org/10.1016/j.trsl.2021.05.006.
Shapey, I.M., A. Summers, J. O’Sullivan, C. Fullwood, N.A. Hanley, J. Casey, S. Forbes, M. Rosenthal, P.R.V. Johnson, P. Choudhary, J. Bushnell, J.A.M. Shaw, D. Neiman, R. Shemer, B. Glaser, Y. Dor, T. Augustine, M.K. Rutter, and D. van Dellen. 2023. Beta-cell death and dysfunction drives hyperglycaemia in organ donors. Diabetes, Obesity & Metabolism 25 (12): 3529–3537. https://doi.org/10.1111/dom.15248.
Yuan, Q., B. Tang, and C. Zhang. 2022. Signaling pathways of chronic kidney diseases, implications for therapeutics. Signal Transduction and Targeted Therapy 7 (1): 182. https://doi.org/10.1038/s41392-022-01036-5.
Article PubMed PubMed Central Google Scholar
Aparicio-Trejo OE, Aranda-Rivera AK, Osorio-Alonso H, Martínez-Klimova E, Sánchez-Lozada LG, Pedraza-Chaverri J, Tapia E (2022) Extracellular Vesicles in Redox Signaling and Metabolic Regulation in Chronic Kidney Disease. Antioxidants (Basel) 11 (2). https://doi.org/10.3390/antiox11020356
Zhang, H., Z. Deng, and Y. Wang. 2023. Molecular insight in intrarenal inflammation affecting four main types of cells in nephrons in IgA nephropathy. Front Med (Lausanne) 10: 1128393. https://doi.org/10.3389/fmed.2023.1128393.
Chen, H., and G. Jin. 2021. Downregulation of Salusin-beta protects renal tubular epithelial cells against high glucose-induced inflammation, oxidative stress, apoptosis and lipid accumulation via suppressing miR-155-5p. Bioengineered 12 (1): 6155–6165. https://doi.org/10.1080/21655979.2021.1972900.
Article PubMed PubMed Central Google Scholar
Jiang, L., J. Zhao, Q. Yang, M. Li, H. Liu, X. Xiao, S. Tian, S. Hu, Z. Liu, P. Yang, M. Chen, P. Ye, and J. Xia. 2023. Lysosomal-associated protein transmembrane 5 ameliorates non-alcoholic steatohepatitis by promoting the degradation of CDC42 in mice. Nature Communications 14 (1): 2654. https://doi.org/10.1038/s41467-023-37908-9.
Article PubMed PubMed Central Google Scholar
Ding, H., J. Li, Y. Li, M. Yang, S. Nie, M. Zhou, Z. Zhou, X. Yang, Y. Liu, and F.F. Hou. 2021. MicroRNA-10 negatively regulates inflammation in diabetic kidney via targeting activation of the NLRP3 inflammasome. Molecular Therapy 29 (7): 2308–2320. https://doi.org/10.1016/j.ymthe.2021.03.012.
Article PubMed PubMed Central Google Scholar
Liu, M., K. Liang, J. Zhen, M. Zhou, X. Wang, Z. Wang, X. Wei, Y. Zhang, Y. Sun, Z. Zhou, H. Su, C. Zhang, N. Li, C. Gao, J. Peng, and F. Yi. 2017. Sirt6 deficiency exacerbates podocyte injury and proteinuria through targeting Notch signaling. Nature Communications 8 (1): 413. https://doi.org/10.1038/s41467-017-00498-4.
Article PubMed PubMed Central Google Scholar
Wang W, Li J, Cui S, Li J, Ye X, Wang Z, Zhang T, Jiang X, Kong Y, Chen X, Chen YQ, Zhu S (2024) Microglial Ffar4 deficiency promotes cognitive impairment in the context of metabolic syndrome. Sci Adv 10 (5):eadj7813. https://doi.org/10.1126/sciadv.adj7813
Wang, W., Y. Kong, X. Wang, Z. Wang, C. Tang, J. Li, Q. Yang, Y.Q. Chen, and S. Zhu. 2023. Identification of novel SCD1 inhibitor alleviates nonalcoholic fatty liver disease: Critical role of liver-adipose axis. Cell Communication and Signaling: CCS 21 (1): 268. https://doi.org/10.1186/s12964-023-01297-9.
Article PubMed PubMed Central Google Scholar
Habshi, T., V. Shelke, A. Kale, M. Lech, and A.B. Gaikwad. 2023. Hippo signaling in acute kidney injury to chronic kidney disease transition: Current understandings and future targets. Drug Discovery Today 28 (8): 103649. https://doi.org/10.1016/j.drudis.2023.103649.
Ha, S., Y. Yang, B.M. Kim, J. Kim, M. Son, D. Kim, H.S. Yu, D.S. Im, and H.Y. Chung. 1868. Chung KW (2022) Activation of PAR2 promotes high-fat diet-induced renal injury by inducing oxidative stress and inflammation. Biochimica et Biophysica Acta, Molecular Basis of Disease 10: 166474. https://doi.org/10.1016/j.bbadis.2022.166474.
Ren, L., H. Cui, Y. Wang, F. Ju, Y. Cai, X. Gang, and G. Wang. 2023. The role of lipotoxicity in kidney disease: From molecular mechanisms to therapeutic prospects. Biomedicine & Pharmacotherapy 161: 114465. https://doi.org/10.1016/j.biopha.2023.114465.
Grove, K.J., P.A. Voziyan, J.M. Spraggins, S. Wang, P. Paueksakon, R.C. Harris, B.G. Hudson, and R.M. Caprioli. 2014. Diabetic nephropathy induces alterations in the glomerular and tubule lipid profiles. Journal of Lipid Research 55 (7): 1375–1385. https://doi.org/10.1194/jlr.M049189.
Article PubMed PubMed Central Google Scholar
Falkevall, A., A. Mehlem, I. Palombo, B. Heller Sahlgren, L. Ebarasi, L. He, A.J. Ytterberg, H. Olauson, J. Axelsson, B. Sundelin, J. Patrakka, P. Scotney, A. Nash, and U. Eriksson. 2017. Reducing VEGF-B Signaling Ameliorates Renal Lipotoxicity and Protects against Diabetic Kidney Disease. Cell Metabolism 25 (3): 713–726. https://doi.org/10.1016/j.cmet.2017.01.004.
Herman-Edelstein, M., P. Scherzer, A. Tobar, M. Levi, and U. Gafter. 2014. Altered renal lipid metabolism and renal lipid accumulation in human diabetic nephropathy. Journal of Lipid Research 55 (3): 561–572. https://doi.org/10.1194/jlr.P040501.
Article PubMed PubMed Central Google Scholar
Hou, Y., E. Tan, H. Shi, X. Ren, X. Wan, W. Wu, Y. Chen, H. Niu, G. Zhu, J. Li, Y. Li, and L. Wang. 2024. Mitochondrial oxidative damage reprograms lipid metabolism of renal tubular epithelial cells in the diabetic kidney. Cellular and Molecular Life Sciences 81 (1): 23. https://doi.org/10.1007/s00018-023-05078-y.
Article PubMed PubMed Central Google Scholar
Yoshioka, K., Y. Hirakawa, M. Kurano, Y. Ube, Y. Ono, K. Kojima, T. Iwama, K. Kano, S. Hasegawa, T. Inoue, T. Shimada, J. Aoki, Y. Yatomi, M. Nangaku, and R. Inagi. 2022. Lysophosphatidylcholine mediates fast decline in kidney function in diabetic kidney disease. Kidney International 101 (3): 510–526. https://doi.org/10.1016/j.kint.2021.10.039.
Kunzelmann, K., J. Sun, D. Markovich, J. König, B. Mürle, M. Mall, and R. Schreiber. 2005. Control of ion transport in mammalian airways by protease activated receptors type 2 (PAR-2). The FASEB Journal 19 (8): 969–970. https://doi.org/10.1096/fj.04-2469fje.
Lohman, R.J., A.J. Cotterell, J. Suen, L. Liu, A.T. Do, D.A. Vesey, and D.P. Fairlie. 2012. Antagonism of protease-activated receptor 2 protects against experimental colitis. Journal of Pharmacology and Experimental Therapeutics 340 (2): 256–265. https://doi.org/10.1124/jpet.111.187062.
Vesey, D.A., W.A. Kruger, P. Poronnik, G.C. Gobé, and D.W. Johnson. 2007. Proinflammatory and proliferative responses of human proximal tubule cells to PAR-2 activation. American Journal of Physiology. Renal Physiology 293 (5): F1441–1449. https://doi.org/10.1152/ajprenal.00088.2007.
Johansson, U., C. Lawson, M. Dabare, D. Syndercombe-Court, A.C. Newland, G.L. Howells, and M.G. Macey. 2005. Human peripheral blood monocytes express protease receptor-2 and respond to receptor activation by production of IL-6, IL-8, and IL-1. Journal of Leukocyte Biology 78 (4): 967–975. https://doi.org/10.1189/jlb.0704422.
Grandaliano, G., P. Pontrelli, G. Cerullo, R. Monno, E. Ranieri, M. Ursi, A. Loverre, L. Gesualdo, and F.P. Schena. 2003. Protease-activated receptor-2 expression in IgA nephropathy: A potential role in the pathogenesis of interstitial fibrosis. Journal of the American Society of Nephrology 14 (8): 2072–2083. https://doi.org/10.1097/01.asn.0000080315.37254.a1.
留言 (0)