F2RL1 Inhibition Alleviates Lipotoxicity-Induced Kidney Injury Through the Hippo Pathway in Diabetic Kidney Disease

Gupta, S., M. Dominguez, and L. Golestaneh. 2023. Diabetic Kidney Disease: An Update. Medical Clinics of North America 107 (4): 689–705. https://doi.org/10.1016/j.mcna.2023.03.004.

Article  PubMed  Google Scholar 

Sheka, A.C., O. Adeyi, J. Thompson, B. Hameed, P.A. Crawford, and S. Ikramuddin. 2020. Nonalcoholic Steatohepatitis: A Review. Jama 323 (12): 1175–1183. https://doi.org/10.1001/jama.2020.2298.

Article  PubMed  Google Scholar 

de Boer, I.H., K. Khunti, T. Sadusky, K.R. Tuttle, J.J. Neumiller, C.M. Rhee, S.E. Rosas, P. Rossing, and G. Bakris. 2022. Diabetes Management in Chronic Kidney Disease: A Consensus Report by the American Diabetes Association (ADA) and Kidney Disease: Improving Global Outcomes (KDIGO). Diabetes Care 45 (12): 3075–3090. https://doi.org/10.2337/dci22-0027.

Article  PubMed  PubMed Central  Google Scholar 

Liu, B.C., T.T. Tang, L.L. Lv, and H.Y. Lan. 2018. Renal tubule injury: A driving force toward chronic kidney disease. Kidney International 93 (3): 568–579. https://doi.org/10.1016/j.kint.2017.09.033.

Article  PubMed  Google Scholar 

Opazo-Ríos L, Mas S, Marín-Royo G, Mezzano S, Gómez-Guerrero C, Moreno JA, Egido J (2020) Lipotoxicity and Diabetic Nephropathy: Novel Mechanistic Insights and Therapeutic Opportunities. Int J Mol Sci 21 (7). https://doi.org/10.3390/ijms21072632

Dahlby T, Simon C, Backe MB, Dahllöf MS, Holson E, Wagner BK, Böni-Schnetzler M, Marzec MT, Lundh M, Mandrup-Poulsen T (2020) Enhancer of Zeste Homolog 2 (EZH2) Mediates Glucolipotoxicity-Induced Apoptosis in β-Cells. Int J Mol Sci 21 (21). https://doi.org/10.3390/ijms21218016

An, Y., B.T. Xu, S.R. Wan, X.M. Ma, Y. Long, Y. Xu, and Z.Z. Jiang. 2023. The role of oxidative stress in diabetes mellitus-induced vascular endothelial dysfunction. Cardiovascular Diabetology 22 (1): 237. https://doi.org/10.1186/s12933-023-01965-7.

Article  PubMed  PubMed Central  Google Scholar 

Louiselle, A.E., S.M. Niemiec, C. Zgheib, and K.W. Liechty. 2021. Macrophage polarization and diabetic wound healing. Translational Research 236: 109–116. https://doi.org/10.1016/j.trsl.2021.05.006.

Article  PubMed  Google Scholar 

Shapey, I.M., A. Summers, J. O’Sullivan, C. Fullwood, N.A. Hanley, J. Casey, S. Forbes, M. Rosenthal, P.R.V. Johnson, P. Choudhary, J. Bushnell, J.A.M. Shaw, D. Neiman, R. Shemer, B. Glaser, Y. Dor, T. Augustine, M.K. Rutter, and D. van Dellen. 2023. Beta-cell death and dysfunction drives hyperglycaemia in organ donors. Diabetes, Obesity & Metabolism 25 (12): 3529–3537. https://doi.org/10.1111/dom.15248.

Article  Google Scholar 

Yuan, Q., B. Tang, and C. Zhang. 2022. Signaling pathways of chronic kidney diseases, implications for therapeutics. Signal Transduction and Targeted Therapy 7 (1): 182. https://doi.org/10.1038/s41392-022-01036-5.

Article  PubMed  PubMed Central  Google Scholar 

Aparicio-Trejo OE, Aranda-Rivera AK, Osorio-Alonso H, Martínez-Klimova E, Sánchez-Lozada LG, Pedraza-Chaverri J, Tapia E (2022) Extracellular Vesicles in Redox Signaling and Metabolic Regulation in Chronic Kidney Disease. Antioxidants (Basel) 11 (2). https://doi.org/10.3390/antiox11020356

Zhang, H., Z. Deng, and Y. Wang. 2023. Molecular insight in intrarenal inflammation affecting four main types of cells in nephrons in IgA nephropathy. Front Med (Lausanne) 10: 1128393. https://doi.org/10.3389/fmed.2023.1128393.

Article  PubMed  Google Scholar 

Chen, H., and G. Jin. 2021. Downregulation of Salusin-beta protects renal tubular epithelial cells against high glucose-induced inflammation, oxidative stress, apoptosis and lipid accumulation via suppressing miR-155-5p. Bioengineered 12 (1): 6155–6165. https://doi.org/10.1080/21655979.2021.1972900.

Article  PubMed  PubMed Central  Google Scholar 

Jiang, L., J. Zhao, Q. Yang, M. Li, H. Liu, X. Xiao, S. Tian, S. Hu, Z. Liu, P. Yang, M. Chen, P. Ye, and J. Xia. 2023. Lysosomal-associated protein transmembrane 5 ameliorates non-alcoholic steatohepatitis by promoting the degradation of CDC42 in mice. Nature Communications 14 (1): 2654. https://doi.org/10.1038/s41467-023-37908-9.

Article  PubMed  PubMed Central  Google Scholar 

Ding, H., J. Li, Y. Li, M. Yang, S. Nie, M. Zhou, Z. Zhou, X. Yang, Y. Liu, and F.F. Hou. 2021. MicroRNA-10 negatively regulates inflammation in diabetic kidney via targeting activation of the NLRP3 inflammasome. Molecular Therapy 29 (7): 2308–2320. https://doi.org/10.1016/j.ymthe.2021.03.012.

Article  PubMed  PubMed Central  Google Scholar 

Liu, M., K. Liang, J. Zhen, M. Zhou, X. Wang, Z. Wang, X. Wei, Y. Zhang, Y. Sun, Z. Zhou, H. Su, C. Zhang, N. Li, C. Gao, J. Peng, and F. Yi. 2017. Sirt6 deficiency exacerbates podocyte injury and proteinuria through targeting Notch signaling. Nature Communications 8 (1): 413. https://doi.org/10.1038/s41467-017-00498-4.

Article  PubMed  PubMed Central  Google Scholar 

Wang W, Li J, Cui S, Li J, Ye X, Wang Z, Zhang T, Jiang X, Kong Y, Chen X, Chen YQ, Zhu S (2024) Microglial Ffar4 deficiency promotes cognitive impairment in the context of metabolic syndrome. Sci Adv 10 (5):eadj7813. https://doi.org/10.1126/sciadv.adj7813

Wang, W., Y. Kong, X. Wang, Z. Wang, C. Tang, J. Li, Q. Yang, Y.Q. Chen, and S. Zhu. 2023. Identification of novel SCD1 inhibitor alleviates nonalcoholic fatty liver disease: Critical role of liver-adipose axis. Cell Communication and Signaling: CCS 21 (1): 268. https://doi.org/10.1186/s12964-023-01297-9.

Article  PubMed  PubMed Central  Google Scholar 

Habshi, T., V. Shelke, A. Kale, M. Lech, and A.B. Gaikwad. 2023. Hippo signaling in acute kidney injury to chronic kidney disease transition: Current understandings and future targets. Drug Discovery Today 28 (8): 103649. https://doi.org/10.1016/j.drudis.2023.103649.

Article  PubMed  Google Scholar 

Ha, S., Y. Yang, B.M. Kim, J. Kim, M. Son, D. Kim, H.S. Yu, D.S. Im, and H.Y. Chung. 1868. Chung KW (2022) Activation of PAR2 promotes high-fat diet-induced renal injury by inducing oxidative stress and inflammation. Biochimica et Biophysica Acta, Molecular Basis of Disease 10: 166474. https://doi.org/10.1016/j.bbadis.2022.166474.

Article  Google Scholar 

Ren, L., H. Cui, Y. Wang, F. Ju, Y. Cai, X. Gang, and G. Wang. 2023. The role of lipotoxicity in kidney disease: From molecular mechanisms to therapeutic prospects. Biomedicine & Pharmacotherapy 161: 114465. https://doi.org/10.1016/j.biopha.2023.114465.

Article  Google Scholar 

Grove, K.J., P.A. Voziyan, J.M. Spraggins, S. Wang, P. Paueksakon, R.C. Harris, B.G. Hudson, and R.M. Caprioli. 2014. Diabetic nephropathy induces alterations in the glomerular and tubule lipid profiles. Journal of Lipid Research 55 (7): 1375–1385. https://doi.org/10.1194/jlr.M049189.

Article  PubMed  PubMed Central  Google Scholar 

Falkevall, A., A. Mehlem, I. Palombo, B. Heller Sahlgren, L. Ebarasi, L. He, A.J. Ytterberg, H. Olauson, J. Axelsson, B. Sundelin, J. Patrakka, P. Scotney, A. Nash, and U. Eriksson. 2017. Reducing VEGF-B Signaling Ameliorates Renal Lipotoxicity and Protects against Diabetic Kidney Disease. Cell Metabolism 25 (3): 713–726. https://doi.org/10.1016/j.cmet.2017.01.004.

Article  PubMed  Google Scholar 

Herman-Edelstein, M., P. Scherzer, A. Tobar, M. Levi, and U. Gafter. 2014. Altered renal lipid metabolism and renal lipid accumulation in human diabetic nephropathy. Journal of Lipid Research 55 (3): 561–572. https://doi.org/10.1194/jlr.P040501.

Article  PubMed  PubMed Central  Google Scholar 

Hou, Y., E. Tan, H. Shi, X. Ren, X. Wan, W. Wu, Y. Chen, H. Niu, G. Zhu, J. Li, Y. Li, and L. Wang. 2024. Mitochondrial oxidative damage reprograms lipid metabolism of renal tubular epithelial cells in the diabetic kidney. Cellular and Molecular Life Sciences 81 (1): 23. https://doi.org/10.1007/s00018-023-05078-y.

Article  PubMed  PubMed Central  Google Scholar 

Yoshioka, K., Y. Hirakawa, M. Kurano, Y. Ube, Y. Ono, K. Kojima, T. Iwama, K. Kano, S. Hasegawa, T. Inoue, T. Shimada, J. Aoki, Y. Yatomi, M. Nangaku, and R. Inagi. 2022. Lysophosphatidylcholine mediates fast decline in kidney function in diabetic kidney disease. Kidney International 101 (3): 510–526. https://doi.org/10.1016/j.kint.2021.10.039.

Article  PubMed  Google Scholar 

Kunzelmann, K., J. Sun, D. Markovich, J. König, B. Mürle, M. Mall, and R. Schreiber. 2005. Control of ion transport in mammalian airways by protease activated receptors type 2 (PAR-2). The FASEB Journal 19 (8): 969–970. https://doi.org/10.1096/fj.04-2469fje.

Article  PubMed  Google Scholar 

Lohman, R.J., A.J. Cotterell, J. Suen, L. Liu, A.T. Do, D.A. Vesey, and D.P. Fairlie. 2012. Antagonism of protease-activated receptor 2 protects against experimental colitis. Journal of Pharmacology and Experimental Therapeutics 340 (2): 256–265. https://doi.org/10.1124/jpet.111.187062.

Article  PubMed  Google Scholar 

Vesey, D.A., W.A. Kruger, P. Poronnik, G.C. Gobé, and D.W. Johnson. 2007. Proinflammatory and proliferative responses of human proximal tubule cells to PAR-2 activation. American Journal of Physiology. Renal Physiology 293 (5): F1441–1449. https://doi.org/10.1152/ajprenal.00088.2007.

Article  PubMed  Google Scholar 

Johansson, U., C. Lawson, M. Dabare, D. Syndercombe-Court, A.C. Newland, G.L. Howells, and M.G. Macey. 2005. Human peripheral blood monocytes express protease receptor-2 and respond to receptor activation by production of IL-6, IL-8, and IL-1. Journal of Leukocyte Biology 78 (4): 967–975. https://doi.org/10.1189/jlb.0704422.

Article  PubMed  Google Scholar 

Grandaliano, G., P. Pontrelli, G. Cerullo, R. Monno, E. Ranieri, M. Ursi, A. Loverre, L. Gesualdo, and F.P. Schena. 2003. Protease-activated receptor-2 expression in IgA nephropathy: A potential role in the pathogenesis of interstitial fibrosis. Journal of the American Society of Nephrology 14 (8): 2072–2083. https://doi.org/10.1097/01.asn.0000080315.37254.a1.

Article  PubMed 

留言 (0)

沒有登入
gif