Unlocking the potential of beta-glucans: a comprehensive review from synthesis to drug delivery carrier potency

Arruebo M, Vilaboa N, Sáez-Gutierrez B, Lambea J, Tres A, Valladares M, González-Fernández Á. Assessment of the evolution of cancer treatment therapies. Cancers. 2011;3:3279–330.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nurgali K, Jagoe RT. Editorial: Adverse Effects of Cancer Chemotherapy: Anything New to Improve Tolerance and Reduce Sequelae? Front Pharmacol. 2018;9:245.

Article  PubMed  PubMed Central  Google Scholar 

Senapati S, Mahanta AK, Kumar S, Maiti P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct Target Ther. 2018;3:7.

Article  PubMed  PubMed Central  Google Scholar 

Khalid A, Persano S, Shen H, Zhao Y, Blanco E, Ferrari M, Wolfram J. Strategies for improving drug delivery: nanocarriers and microenvironmental priming. Expert Opin Drug Deliver. 2017;14:865–77.

Article  CAS  Google Scholar 

Petrak K. Essential properties of drug-targeting delivery systems. Drug Disc Today. 2005;10:1667–73.

Article  CAS  Google Scholar 

Trucillo P, Drug Carriers: Classification, Administration, Release Profiles, and Industrial Approach, in: Processes, 2021.

Svenson S, Carrier-Based Drug Delivery, in: Carrier-Based Drug Delivery, American Chemical Society, 2004;2–23.

Simone EA, Dziubla TD, Muzykantov VR. Polymeric carriers: role of geometry in drug delivery. Expert Opin Drug Deliver. 2008;5:1283–300.

Article  CAS  Google Scholar 

Seo G, Hyun C, Choi S, Kim YM, Cho M. The wound healing effect of four types of beta-glucan. Appl Biol Chem. 2019;62:20.

Article  Google Scholar 

Pérez & Tvaroška. Chapter 1 - Carbohydrate-Protein Interactions: Molecular Modeling Insights. In: Horton D, editor. Advances in Carbohydrate Chemistry and Biochemistry. Academic Press; 2014. p. 9–136.

Google Scholar 

Mudgil & Barak. Chapter 2 - Classification, Technological Properties, and Sustainable Sources. In: Galanakis CM, editor. Dietary Fiber: Properties. Recovery, and Applications, Academic Press; 2019. p. 27–58.

Google Scholar 

Du B, Meenu M, Liu H, Xu B. A Concise Review on the Molecular Structure and Function Relationship of β-glucan. Int J Mol Sci. 2019;20(16):4032.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhu F, Du B, Xu B. A critical review on production and industrial applications of beta-glucans. Food Hydrocoll. 2016;52:275–88.

Article  CAS  Google Scholar 

Chioru A, Chirsanova A. β -Glucans: Characterization, Extraction Methods, and Valorization. Food Nutri Sci. 2023;14:963–83.

CAS  Google Scholar 

Mejía SM, de Francisco A. A comprehensive review on cereal β-glucan: extraction, characterization, causes of degradation, and food application. Crit Rev Food Sci Nutri. 2020;60:3693–704.

Article  Google Scholar 

Benito-Román Ó, Alonso E, Gairola K, Cocero MJ. Fixed-bed extraction of β-glucan from cereals by means of pressurized hot water. J Supercrit Fluids. 2013;82:122–8.

Article  Google Scholar 

Maheshwari G, Sowrirajan S, Joseph B. Extraction and Isolation of β-glucan from Grain Sources—A Review. J Food Sci. 2017;82:1535–45.

Article  CAS  PubMed  Google Scholar 

Mahmoud Amer E, Saber SH, Abo Markeb A, Elkhawaga AA, Mekhemer IM, Zohri AN, Abujamel TS, Harakeh S, Abd-Allah EA. Enhancement of β-glucan Biological Activity Using a Modified Acid-Base Extraction Method from Saccharomyces cerevisiae. Mol (Basel, Switzerland). 2021;26(8):2113.

Article  Google Scholar 

Ibrahim HK, Mahdi MS. Antioxidant Effect of Beta-glucan Extract from Saccharomyces Cerevisiae. 2020;14

Gautério GV, Silvério SI, Egea MB, Lemes AC. β-glucan from brewer’s spent yeast as a techno-functional food ingredient. Front Food Sci Technol. 2022;2:1074505.

Article  Google Scholar 

Mahmoud Amer E, Saber SH, Abo Markeb A, Elkhawaga AA, Mekhemer IM, Zohri AN, Abujamel TS, Harakeh S, Abd-Allah EA. Enhancement of β-glucan Biological Activity Using a Modified Acid-Base Extraction Method from Saccharomyces cerevisiae. Mol (Basel, Switzerland). 2021;26(8):2113.

Article  Google Scholar 

Kath F, Kulicke WM. Mild enzymatic isolation of mannan and glucan from yeast Saccharomyces cerevisiae. Die Angewandte Makromolekulare Chemie. 1999;268:59–68.

Article  CAS  Google Scholar 

Kaur R, Sharma M, Ji D, Xu M, Agyei D. Structural Features, Modification, and Functionalities of Beta-Glucan. Fibers. 2019;8:1.

Article  Google Scholar 

Han B, Baruah K, Cox E, Vanrompay D, Bossier P. Structure-Functional Activity Relationship of β-glucans From the Perspective of Immunomodulation: A Mini-Review. Front Immunol. 2020;11:658.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kofuji A. Tsubaki, Konishi, Isobe&Murata Antioxidant Activity of β-glucan. ISRN Pharmaceut. 2012;2012:125864.

Article  Google Scholar 

Kofuji K, Aoki A, Tsubaki K, Konishi M, Isobe T, Murata Y. Antioxidant Activity of β-Glucan. ISRN pharmaceutics. 2012;2012:125864.

Article  PubMed  PubMed Central  Google Scholar 

Du B, Lin C, Bian Z, Xu B. An insight into anti-inflammatory effects of fungal beta-glucans. Trends Food Sci Technol. 2015;41:49–59.

Article  CAS  Google Scholar 

Murphy EJ, Rezoagli E, Major I, Rowan NJ, Laffey JG. β-glucan Metabolic and Immunomodulatory Properties and Potential for Clinical Application. J Fungi. 2020;6(4):356.

Article  CAS  Google Scholar 

Bacha U, Nasir M, Iqbal S, Anjum AA. Nutraceutical, Anti-Inflammatory, and Immune Modulatory Effects of β-glucan Isolated from Yeast. BioMed Res Int. 2017;2017:8972678.

Article  PubMed  PubMed Central  Google Scholar 

Joyce SA, Kamil A, Fleige L, Gahan CG. The Cholesterol-Lowering Effect of Oats and Oat Beta Glucan: Modes of Action and Potential Role of Bile Acids and the Microbiome. Front Nutri. 2019;6:171.

Article  Google Scholar 

Kerckhoffs DA, Hornstra G, Mensink RP. Cholesterol-lowering effect of β-glucan from oat bran in mildly hypercholesterolemic subjects may decrease when β-glucan is incorporated into bread and cookies2. Am J Clin Nutri. 2003;78:221–7.

Article  CAS  Google Scholar 

Andrade EF, Lobato RV, de Araújo TV, Zangerônimo MG, de Sousa RV, Pereira LJ. Effect of beta-glucans in the control of blood glucose levels of diabetic patients: a systematic review. Nutri Hosp. 2014;31:170–7.

Google Scholar 

Shen XL, Zhao T, Zhou Y, Shi X, Zou Y, Zhao G. Effect of Oat β-glucan Intake on Glycaemic Control and Insulin Sensitivity of Diabetic Patients: A Meta-Analysis of Randomized Controlled Trials. Nutrients. 2016;8(1):39.

Article  PubMed  PubMed Central  Google Scholar 

Xu C, Wang F, Guan S, Wang L. β-glucans obtained from fungus for wound healing: A review. Carbohydr Polym. 2024;327:121662.

Article  CAS  PubMed  Google Scholar 

Majtan J, Jesenak M. β-glucans: Multi-Functional Modulator of Wound Healing. Mol (Basel, Switzerland). 2018;23(4):806.

Article  Google Scholar 

Seo G, Hyun C, Choi S, Kim YM, Cho M. The wound healing effect of four types of beta-glucan. Appl Biol Chem. 2019;62(1):1–9.

Article  Google Scholar 

Jayachandran M, Chen J, Chung SS, Xu B. A critical review on the impacts of β-glucans on gut microbiota and human health. J Nutri Biochem. 2018;61:101–10.

Article  CAS  Google Scholar 

He L, Zhu Z, Qi C. β-glucan—A promising immunocyte-targeting drug delivery vehicle: Superiority, applications and future prospects. Carbohydr Polym. 2024;339:122252.

Article  CAS  PubMed  Google Scholar 

Geller A, Shrestha R, Yan J. Yeast-Derived β-glucan in Cancer: Novel Uses of a Traditional Therapeutic. Int J Mol Sci. 2019;20(15):3618.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vetvicka V, Vannucci L, Sima P. β-glucan as a new tool in vaccine development. Scandinavian J Immunol. 2020;91:e12833.

Article  Google Scholar 

Wold CW, Christopoulos PF, Arias MA, Dzovor DE, Øynebråten I, Corthay A, Inngjerdingen KT. Fungal polysaccharides from Inonotus obliquus are agonists for Toll-like receptors and induce macrophage anti-cancer activity. Commun Biol. 2024;7:222.

留言 (0)

沒有登入
gif