Lee H, Lee S, Jeong D, Kim SJ. Ginsenoside Rh2 epigenetically regulates cell-mediated immune pathway to inhibit proliferation of MCF-7 breast cancer cells. J Ginseng Res. 2018;42:455–62.
Lang Z, Yu S, Hu Y, Tao Q, Zhang J, Wang H, et al. Ginsenoside Rh2 promotes hepatic stellate cell ferroptosis and inactivation via regulation of IRF1-inhibited SLC7A11. Phytomedicine. 2023;118:154950.
Article CAS PubMed Google Scholar
Ma J, Zhao D, Yu D, Song W, Yang X, Yin H. Ginsenoside Rh2 attenuates the progression of non-small cell lung cancer by sponging miR-28-5p/STK4 axis and inactivating Wnt/β-catenin signaling. Cancer Med. 2023;12:12653–67.
Article CAS PubMed PubMed Central Google Scholar
Li S, Han W, He Q, Wang Y, Jin G, Zhang Y. Ginsenoside Rh2 suppresses colon cancer growth by targeting the miR-150-3p/SRCIN1/Wnt axis. Acta Biochim Biophys Sin. 2023;55:633–48.
Article CAS PubMed PubMed Central Google Scholar
Li H, Han C, Chen C, Han G, Li Y. (20S) Ginsenoside Rh2-Activated, distinct apoptosis pathways in highly and poorly differentiated human esophageal Cancer cells. Molecules. 2022;27:5602.
Article CAS PubMed PubMed Central Google Scholar
Bian S, Liu M, Yang S, Lu S, Wang S, Bai X, et al. 20(S)-Ginsenoside Rh2-induced apoptosis and protective autophagy in cervical cancer cells by inhibiting AMPK/mTOR pathway. Biosci Biotechnol Biochem. 2021;86:92–103.
Jiang S, Yan J, Chen X, Xie Q, Lin W, Lin T, et al. Ginsenoside Rh2 inhibits thyroid cancer cell migration and proliferation via activation of miR-524-5p. Arch Med Sci. 2020;18:164–70.
PubMed PubMed Central Google Scholar
Li H, Chen C, Li Z-M, Yang Y, Xing C-Q, Li Y, et al. Specific Interaction with Human serum albumin reduces Ginsenoside cytotoxicity in human umbilical vein endothelial cells. Front Pharmacol. 2020;11:498.
Article CAS PubMed PubMed Central Google Scholar
Lin Y, Li Y, Song Z-G, Zhu H, Jin Y-H. The interaction of serum albumin with ginsenoside Rh2 resulted in the downregulation of ginsenoside Rh2 cytotoxicity. J Ginseng Res. 2017;41:330–8.
Zare-Zardini H, Alemi A, Taheri-Kafrani A, Hosseini SA, Soltaninejad H, Hamidieh AA, et al. Assessment of a New Ginsenoside Rh2 Nanoniosomal Formulation for enhanced antitumor efficacy on prostate Cancer: an in vitro study. Drug Des Devel Ther. 2020;14:3315–24.
Article CAS PubMed PubMed Central Google Scholar
Sun M, Zhu C, Long J, Lu C, Pan X, Wu C. PLGA microsphere-based composite hydrogel for dual delivery of ciprofloxacin and ginsenoside Rh2 to treat Staphylococcus aureus -induced skin infections. Drug Deliv. 2020;27:632–41.
Article CAS PubMed PubMed Central Google Scholar
Yang F, Zhou J, Hu X, Yu SK, Liu C, Pan R, et al. Preparation and evaluation of self-microemulsions for improved bioavailability of ginsenoside-Rh1 and Rh2. Drug Deliv Transl Res. 2017;7:731–7.
Article CAS PubMed Google Scholar
Xu L, Yu H, Yin S, Zhang R, Zhou Y, Li J. Liposome-based delivery systems for ginsenoside Rh2: in vitro and in vivo comparisons. J Nanoparticle Res. 2015;17:415.
Tran P, Pyo Y-C, Kim D-H, Lee S-E, Kim J-K, Park J-S. Overview of the Manufacturing Methods of Solid Dispersion Technology for improving the solubility of Poorly Water-Soluble drugs and application to Anticancer drugs. Pharmaceutics. 2019;11:132.
Article CAS PubMed PubMed Central Google Scholar
Han R, Xiong H, Ye Z, Yang Y, Huang T, Jing Q, et al. Predicting physical stability of solid dispersions by machine learning techniques. J Controlled Release. 2019;311–312:16–25.
Dong J, Gao H, Ouyang D. PharmSD: a novel AI-based computational platform for solid dispersion formulation design. Int J Pharm. 2021;604:120705.
Article CAS PubMed Google Scholar
Gao H, Wang W, Dong J, Ye Z, Ouyang D. An integrated computational methodology with data-driven machine learning, molecular modeling and PBPK modeling to accelerate solid dispersion formulation design. Eur J Pharm Biopharm. 2021;158:336–46.
Article CAS PubMed Google Scholar
He Y, Ye Z, Liu X, Wei Z, Qiu F, Li H-F, et al. Can machine learning predict drug nanocrystals? J Controlled Release. 2020;322:274–85.
Gao H, Kan S, Ye Z, Feng Y, Jin L, Zhang X, et al. Development of in silico methodology for siRNA lipid nanoparticle formulations. Chem Eng J. 2022;442:136310.
Zhao Q, Ye Z, Su Y, Ouyang D. Predicting complexation performance between cyclodextrins and guest molecules by integrated machine learning and molecular modeling techniques. Acta Pharm Sin B. 2019;9:1241–52.
Article PubMed PubMed Central Google Scholar
Gao H, Ye Z, Dong J, Gao H, Yu H, Li H, et al. Predicting drug/phospholipid complexation by the lightGBM method. Chem Phys Lett. 2020;747:137354.
Han R, Ye Z, Zhang Y, Cheng Y, Zheng Y, Ouyang D. Predicting liposome formulations by the integrated machine learning and molecular modeling approaches. Asian J Pharm Sci. 2023;18:100811.
Article PubMed PubMed Central Google Scholar
Deng J, Ye Z, Zheng W, Chen J, Gao H, Wu Z, et al. Machine learning in accelerating microsphere formulation development. Drug Deliv Transl Res. 2023;13:966–82.
Gao H, Jia H, Dong J, Yang X, Li H, Ouyang D. Integrated in silico formulation design of self-emulsifying drug delivery systems. Acta Pharm Sin B. 2021;11:3585–94.
Article CAS PubMed PubMed Central Google Scholar
Wegiel LA, Mauer LJ, Edgar KJ, Taylor LS. Crystallization of Amorphous Solid dispersions of Resveratrol during Preparation and Storage—Impact of different polymers. J Pharm Sci. 2013;102:171–84.
Article CAS PubMed Google Scholar
Yang F, Su Y, Small J, Huang C, Martin GE, Farrington AM, et al. Probing the molecular-level interactions in an active Pharmaceutical ingredient (API) - polymer dispersion and the resulting impact on drug product formulation. Pharm Res. 2020;37:94.
Article CAS PubMed Google Scholar
Telang C, Mujumdar S, Mathew M. Improved physical stability of amorphous state through acid base interactions. J Pharm Sci. 2009;98:2149–59.
Article CAS PubMed Google Scholar
Walden DM, Bundey Y, Jagarapu A, Antontsev V, Chakravarty K, Varshney J. Molecular simulation and statistical learning methods toward predicting drug–polymer amorphous solid dispersion miscibility, stability, and formulation design. Molecules. 2021;26:182.
Article CAS PubMed PubMed Central Google Scholar
Han R, Huang T, Liu X, Yin X, Li H, Lu J, et al. Insight into the dissolution molecular mechanism of ternary solid dispersions by combined experiments and molecular simulations. AAPS PharmSciTech. 2019;20:274.
Chan T, Ouyang D. Investigating the molecular dissolution process of binary solid dispersions by molecular dynamics simulations. Asian J Pharm Sci. 2018;13:248–54.
Panse N, Gerk PM. The Caco-2 Model: modifications and enhancements to improve efficiency and predictive performance. Int J Pharm. 2022;624:122004.
留言 (0)