Computer-driven formulation development of Ginsenoside Rh2 ternary solid dispersion

Lee H, Lee S, Jeong D, Kim SJ. Ginsenoside Rh2 epigenetically regulates cell-mediated immune pathway to inhibit proliferation of MCF-7 breast cancer cells. J Ginseng Res. 2018;42:455–62.

Article  PubMed  Google Scholar 

Lang Z, Yu S, Hu Y, Tao Q, Zhang J, Wang H, et al. Ginsenoside Rh2 promotes hepatic stellate cell ferroptosis and inactivation via regulation of IRF1-inhibited SLC7A11. Phytomedicine. 2023;118:154950.

Article  CAS  PubMed  Google Scholar 

Ma J, Zhao D, Yu D, Song W, Yang X, Yin H. Ginsenoside Rh2 attenuates the progression of non-small cell lung cancer by sponging miR-28-5p/STK4 axis and inactivating Wnt/β-catenin signaling. Cancer Med. 2023;12:12653–67.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li S, Han W, He Q, Wang Y, Jin G, Zhang Y. Ginsenoside Rh2 suppresses colon cancer growth by targeting the miR-150-3p/SRCIN1/Wnt axis. Acta Biochim Biophys Sin. 2023;55:633–48.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li H, Han C, Chen C, Han G, Li Y. (20S) Ginsenoside Rh2-Activated, distinct apoptosis pathways in highly and poorly differentiated human esophageal Cancer cells. Molecules. 2022;27:5602.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bian S, Liu M, Yang S, Lu S, Wang S, Bai X, et al. 20(S)-Ginsenoside Rh2-induced apoptosis and protective autophagy in cervical cancer cells by inhibiting AMPK/mTOR pathway. Biosci Biotechnol Biochem. 2021;86:92–103.

Article  PubMed  Google Scholar 

Jiang S, Yan J, Chen X, Xie Q, Lin W, Lin T, et al. Ginsenoside Rh2 inhibits thyroid cancer cell migration and proliferation via activation of miR-524-5p. Arch Med Sci. 2020;18:164–70.

PubMed  PubMed Central  Google Scholar 

Li H, Chen C, Li Z-M, Yang Y, Xing C-Q, Li Y, et al. Specific Interaction with Human serum albumin reduces Ginsenoside cytotoxicity in human umbilical vein endothelial cells. Front Pharmacol. 2020;11:498.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lin Y, Li Y, Song Z-G, Zhu H, Jin Y-H. The interaction of serum albumin with ginsenoside Rh2 resulted in the downregulation of ginsenoside Rh2 cytotoxicity. J Ginseng Res. 2017;41:330–8.

Article  PubMed  Google Scholar 

Zare-Zardini H, Alemi A, Taheri-Kafrani A, Hosseini SA, Soltaninejad H, Hamidieh AA, et al. Assessment of a New Ginsenoside Rh2 Nanoniosomal Formulation for enhanced antitumor efficacy on prostate Cancer: an in vitro study. Drug Des Devel Ther. 2020;14:3315–24.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sun M, Zhu C, Long J, Lu C, Pan X, Wu C. PLGA microsphere-based composite hydrogel for dual delivery of ciprofloxacin and ginsenoside Rh2 to treat Staphylococcus aureus -induced skin infections. Drug Deliv. 2020;27:632–41.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang F, Zhou J, Hu X, Yu SK, Liu C, Pan R, et al. Preparation and evaluation of self-microemulsions for improved bioavailability of ginsenoside-Rh1 and Rh2. Drug Deliv Transl Res. 2017;7:731–7.

Article  CAS  PubMed  Google Scholar 

Xu L, Yu H, Yin S, Zhang R, Zhou Y, Li J. Liposome-based delivery systems for ginsenoside Rh2: in vitro and in vivo comparisons. J Nanoparticle Res. 2015;17:415.

Article  Google Scholar 

Tran P, Pyo Y-C, Kim D-H, Lee S-E, Kim J-K, Park J-S. Overview of the Manufacturing Methods of Solid Dispersion Technology for improving the solubility of Poorly Water-Soluble drugs and application to Anticancer drugs. Pharmaceutics. 2019;11:132.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Han R, Xiong H, Ye Z, Yang Y, Huang T, Jing Q, et al. Predicting physical stability of solid dispersions by machine learning techniques. J Controlled Release. 2019;311–312:16–25.

Article  Google Scholar 

Dong J, Gao H, Ouyang D. PharmSD: a novel AI-based computational platform for solid dispersion formulation design. Int J Pharm. 2021;604:120705.

Article  CAS  PubMed  Google Scholar 

Gao H, Wang W, Dong J, Ye Z, Ouyang D. An integrated computational methodology with data-driven machine learning, molecular modeling and PBPK modeling to accelerate solid dispersion formulation design. Eur J Pharm Biopharm. 2021;158:336–46.

Article  CAS  PubMed  Google Scholar 

He Y, Ye Z, Liu X, Wei Z, Qiu F, Li H-F, et al. Can machine learning predict drug nanocrystals? J Controlled Release. 2020;322:274–85.

Article  CAS  Google Scholar 

Gao H, Kan S, Ye Z, Feng Y, Jin L, Zhang X, et al. Development of in silico methodology for siRNA lipid nanoparticle formulations. Chem Eng J. 2022;442:136310.

Article  CAS  Google Scholar 

Zhao Q, Ye Z, Su Y, Ouyang D. Predicting complexation performance between cyclodextrins and guest molecules by integrated machine learning and molecular modeling techniques. Acta Pharm Sin B. 2019;9:1241–52.

Article  PubMed  PubMed Central  Google Scholar 

Gao H, Ye Z, Dong J, Gao H, Yu H, Li H, et al. Predicting drug/phospholipid complexation by the lightGBM method. Chem Phys Lett. 2020;747:137354.

Article  CAS  Google Scholar 

Han R, Ye Z, Zhang Y, Cheng Y, Zheng Y, Ouyang D. Predicting liposome formulations by the integrated machine learning and molecular modeling approaches. Asian J Pharm Sci. 2023;18:100811.

Article  PubMed  PubMed Central  Google Scholar 

Deng J, Ye Z, Zheng W, Chen J, Gao H, Wu Z, et al. Machine learning in accelerating microsphere formulation development. Drug Deliv Transl Res. 2023;13:966–82.

Article  PubMed  Google Scholar 

Gao H, Jia H, Dong J, Yang X, Li H, Ouyang D. Integrated in silico formulation design of self-emulsifying drug delivery systems. Acta Pharm Sin B. 2021;11:3585–94.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wegiel LA, Mauer LJ, Edgar KJ, Taylor LS. Crystallization of Amorphous Solid dispersions of Resveratrol during Preparation and Storage—Impact of different polymers. J Pharm Sci. 2013;102:171–84.

Article  CAS  PubMed  Google Scholar 

Yang F, Su Y, Small J, Huang C, Martin GE, Farrington AM, et al. Probing the molecular-level interactions in an active Pharmaceutical ingredient (API) - polymer dispersion and the resulting impact on drug product formulation. Pharm Res. 2020;37:94.

Article  CAS  PubMed  Google Scholar 

Telang C, Mujumdar S, Mathew M. Improved physical stability of amorphous state through acid base interactions. J Pharm Sci. 2009;98:2149–59.

Article  CAS  PubMed  Google Scholar 

Walden DM, Bundey Y, Jagarapu A, Antontsev V, Chakravarty K, Varshney J. Molecular simulation and statistical learning methods toward predicting drug–polymer amorphous solid dispersion miscibility, stability, and formulation design. Molecules. 2021;26:182.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Han R, Huang T, Liu X, Yin X, Li H, Lu J, et al. Insight into the dissolution molecular mechanism of ternary solid dispersions by combined experiments and molecular simulations. AAPS PharmSciTech. 2019;20:274.

Article  PubMed  Google Scholar 

Chan T, Ouyang D. Investigating the molecular dissolution process of binary solid dispersions by molecular dynamics simulations. Asian J Pharm Sci. 2018;13:248–54.

Article  PubMed  Google Scholar 

Panse N, Gerk PM. The Caco-2 Model: modifications and enhancements to improve efficiency and predictive performance. Int J Pharm. 2022;624:122004.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif