Amelioration of breast cancer therapies through normalization of tumor vessels and microenvironment: paradigm shift to improve drug perfusion and nanocarrier permeation

Famta P, Shah S, Jain N, Kumar KC, Bagasariya D, Khatri DK, et al. Tumor-promoting aftermath post-chemotherapy: A focus on breast cancer. Life Sci. 2022;310:121125.

Article  CAS  PubMed  Google Scholar 

Famta P, Shah S, Jain N, Srinivasarao DA, Murthy A, Ahmed T, et al. Albumin-hitchhiking: Fostering the pharmacokinetics and anticancer therapeutics. J Control Release. 2023;353:166–85.

Article  CAS  PubMed  Google Scholar 

Famta P, Shah S, Jain N, Srinivasarao DA, Vambhurkar G, Shahrukh S, et al. Nanocarrier-based drug delivery via cell-hitchhiking: Emphasizing pharmacokinetic perspective towards taming the “big-old” tumors. J Drug Deliv Sci Technol. 2023;89:105050.

Article  CAS  Google Scholar 

Teleanu RI, Chircov C, Grumezescu AM, Teleanu DM. Tumor angiogenesis and anti-angiogenic strategies for cancer treatment. J Clin Med. 2020;9:84.

Article  CAS  Google Scholar 

Ludwig N, Rubenich DS, Zaręba Ł, Siewiera J, Pieper J, Braganhol E, et al. Potential roles of tumor cell-and stroma cell-derived small extracellular vesicles in promoting a pro-angiogenic tumor microenvironment. Cancers (Basel). 2020;12:1–15.

Article  Google Scholar 

Lugano R, Ramachandran M, Dimberg A. Tumor angiogenesis: causes, consequences, challenges and opportunities. Cell Mol Life Sci. 2020;77:1745–70.

Article  CAS  PubMed  Google Scholar 

Zeng A, Wang SR, He YX, Yan Y, Zhang Y. Progress in understanding of the stalk and tip cells formation involvement in angiogenesis mechanisms. Tissue Cell. 2021;73:101626.

Article  CAS  PubMed  Google Scholar 

A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs - PubMed [Internet]. [cited 2024 Jun 25]. Available from: https://pubmed.ncbi.nlm.nih.gov/2946403/

Schito L. Hypoxia-dependent angiogenesis and lymphangiogenesis in cancer. Adv Exp Med Biol. 2019;1136:71–85.

Article  CAS  PubMed  Google Scholar 

Rahma OE, Hodi FS. The intersection between tumor angiogenesis and immune suppression. Clin Cancer Res. 2019;25:5449–57.

Article  CAS  PubMed  Google Scholar 

Majidpoor J, Mortezaee K. Angiogenesis as a hallmark of solid tumors - clinical perspectives. Cell Oncol. 2021;44:715–37.

Article  CAS  Google Scholar 

Yehya AHS, Asif M, Petersen SH, Subramaniam AV, Kono K, Majid AMSA, et al. Angiogenesis: Managing the culprits behind tumorigenesis and metastasis. Medicina (Lithuania). 2018;54:8.

Google Scholar 

Jena MK, Janjanam J. Role of extracellular matrix in breast cancer development: A brief update. F1000Res. 2018;7.

Zuazo-Gaztelu I, Casanovas O. Unraveling the role of angiogenesis in cancer ecosystems. Front Oncol. 2018;8:248.

Article  PubMed  PubMed Central  Google Scholar 

Folkman J, Kalluri R. Beginning of angiogenesis research. In: Kufe DW, Pollock RE, Weichselbaum RR et al. editors. H-FCMedicine 6th edition. H (ON): BD. Beginning of angiogenesis research. Available from: https://www.ncbi.nlm.nih.gov/books/NBK13877/. 2003;1–31.

Hillen F, Griffioen AW. Tumour vascularization: Sprouting angiogenesis and beyond. Cancer Metastasis Rev. 2007;26:489–502.

Article  PubMed  PubMed Central  Google Scholar 

Saravanan S, Vimalraj S, Pavani K, Nikarika R, Sumantran VN. Intussusceptive angiogenesis as a key therapeutic target for cancer therapy. Life Sci. 2020;252:117670.

Article  CAS  PubMed  Google Scholar 

Wei X, Chen Y, Jiang X, Peng M, Liu Y, Mo Y, et al. Mechanisms of vasculogenic mimicry in hypoxic tumor microenvironments. Mol Cancer. 2021;20:1–18.

Article  Google Scholar 

Jiang X, Wang J, Deng X, Xiong F, Zhang S, Gong Z, et al. The role of microenvironment in tumor angiogenesis. J Exp Clin Cancer Res. 2020;39:1–19.

Article  Google Scholar 

Shen Y, Quan J, Wang M, Li S, Yang J, Lv M, et al. Tumor vasculogenic mimicry formation as an unfavorable prognostic indicator in patients with breast cancer. Oncotarget. 2017;8:56408–16.

Article  PubMed  PubMed Central  Google Scholar 

Lamalice L, Le Boeuf F, Huot J. Endothelial cell migration during angiogenesis. Circ Res. 2007;100:782–94.

Article  CAS  PubMed  Google Scholar 

Dallinga MG, Boas SE, Klaassen I, Merks RH, van Noorden CJ, Schlingemann RO. Tip Cells in Angiogenesis. eLS. 2015;1–10.

Huang CC, Kuo HM, Wu PC, Cheng SH, Chang TT, Chang YC, et al. Soluble delta-like 1 homolog (DLK1) stimulates angiogenesis through Notch1/Akt/eNOS signaling in endothelial cells. Angiogenesis. 2018;21:299–312.

Article  CAS  PubMed  Google Scholar 

Hida K, Maishi N, Annan DA, Hida Y. Contribution of tumor endothelial cells in cancer progression. Int J Mol Sci. 2018;19:1272.

Article  PubMed  PubMed Central  Google Scholar 

Akil A, Gutiérrez-García AK, Guenter R, Rose JB, Beck AW, Chen H, et al. Notch Signaling in Vascular Endothelial Cells, Angiogenesis, and Tumor Progression: An Update and Prospective. Front Cell Dev Biol. 2021;9:177.

Article  Google Scholar 

Lin J, Lin Y, Su L, Su Q, Guo W, Huang X, et al. The role of Jagged1/Notch pathway-mediated angiogenesis of hepatocarcinoma cells in vitro, and the effects of the spleen-invigorating and blood stasis-removing recipe. Oncol Lett. 2017;14:3616–22.

Article  PubMed  PubMed Central  Google Scholar 

Fong GH, Takeda K. Role and regulation of prolyl hydroxylase domain proteins. Cell Death Differ. 2008;15:635–41.

Article  CAS  PubMed  Google Scholar 

Zhu Z, Hou Q, Guo H. NT5DC2 knockdown inhibits colorectal carcinoma progression by repressing metastasis, angiogenesis and tumor-associated macrophage recruitment: A mechanism involving VEGF signaling. Exp Cell Res. 2020;397: 112311.

Article  CAS  PubMed  Google Scholar 

Mezu-Ndubuisi OJ, Maheshwari A. The role of integrins in inflammation and angiogenesis. Pediatr Res. 2021;89:1619–26.

Article  PubMed  Google Scholar 

Xu S, Zhang H, Chong Y, Guan B, Guo P. YAP Promotes VEGFA Expression and Tumor Angiogenesis Though Gli2 in Human Renal Cell Carcinoma. Arch Med Res. 2019;50:225–33.

Article  CAS  PubMed  Google Scholar 

Zhu Q, Li J, Wu Q, Cheng Y, Zheng H, Zhan T, et al. Linc-OIP5 in the breast cancer cells regulates angiogenesis of human umbilical vein endothelial cells through YAP1/Notch/NRP1 signaling circuit at a tumor microenvironment. Biol Res. 2020;53:1–12.

Article  CAS  Google Scholar 

Yeldag G, Rice A, Hernández A del R. Chemoresistance and the self-maintaining tumor microenvironment. Cancers (Basel). 2018;10.

Trédan O, Galmarini CM, Patel K, Tannock IF. Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst. 2007;99:1441–54.

Article  PubMed  Google Scholar 

Dewhirst MW, Secomb TW. Transport of drugs from blood vessels to tumour tissue. Nat Rev Cancer. 2017;17:738–50.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rasouli SS, Jolma IW, Friis HA. Impact of spatially varying hydraulic conductivities on tumor interstitial fluid pressure distribution. Inform Med Unlocked. 2019;16:100175.

Article  Google Scholar 

Garnier L, Gkountidi AO, Hugues S. Tumor-associated lymphatic vessel features and immunomodulatory functions. Front Immunol. 2019;10.

Less JR, Skalak TC, Sevick EM, Jain RK. Microvascular network architecture in a mammary carcinoma. EXS. 1992;61:74–80.

CAS  PubMed  Google Scholar 

Baxter LT, Jain RK. Transport of fluid and macromolecules in tumors. II. Role of heterogeneous perfusion and lymphatics. Microvasc Res. 1990;40:246–63.

Article  CAS  PubMed  Google Scholar 

Baxter LT, Jain RK. Transport of fluid and macromolecules in tumors. I. Role of interstitial pressure and convection. Microvasc Res. 1989;37:77–104.

Article  CAS  PubMed  Google Scholar 

Raavé R, van Kuppevelt TH, Daamen WF. Chemotherapeut

留言 (0)

沒有登入
gif