Famta P, Shah S, Jain N, Kumar KC, Bagasariya D, Khatri DK, et al. Tumor-promoting aftermath post-chemotherapy: A focus on breast cancer. Life Sci. 2022;310:121125.
Article CAS PubMed Google Scholar
Famta P, Shah S, Jain N, Srinivasarao DA, Murthy A, Ahmed T, et al. Albumin-hitchhiking: Fostering the pharmacokinetics and anticancer therapeutics. J Control Release. 2023;353:166–85.
Article CAS PubMed Google Scholar
Famta P, Shah S, Jain N, Srinivasarao DA, Vambhurkar G, Shahrukh S, et al. Nanocarrier-based drug delivery via cell-hitchhiking: Emphasizing pharmacokinetic perspective towards taming the “big-old” tumors. J Drug Deliv Sci Technol. 2023;89:105050.
Teleanu RI, Chircov C, Grumezescu AM, Teleanu DM. Tumor angiogenesis and anti-angiogenic strategies for cancer treatment. J Clin Med. 2020;9:84.
Ludwig N, Rubenich DS, Zaręba Ł, Siewiera J, Pieper J, Braganhol E, et al. Potential roles of tumor cell-and stroma cell-derived small extracellular vesicles in promoting a pro-angiogenic tumor microenvironment. Cancers (Basel). 2020;12:1–15.
Lugano R, Ramachandran M, Dimberg A. Tumor angiogenesis: causes, consequences, challenges and opportunities. Cell Mol Life Sci. 2020;77:1745–70.
Article CAS PubMed Google Scholar
Zeng A, Wang SR, He YX, Yan Y, Zhang Y. Progress in understanding of the stalk and tip cells formation involvement in angiogenesis mechanisms. Tissue Cell. 2021;73:101626.
Article CAS PubMed Google Scholar
A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs - PubMed [Internet]. [cited 2024 Jun 25]. Available from: https://pubmed.ncbi.nlm.nih.gov/2946403/
Schito L. Hypoxia-dependent angiogenesis and lymphangiogenesis in cancer. Adv Exp Med Biol. 2019;1136:71–85.
Article CAS PubMed Google Scholar
Rahma OE, Hodi FS. The intersection between tumor angiogenesis and immune suppression. Clin Cancer Res. 2019;25:5449–57.
Article CAS PubMed Google Scholar
Majidpoor J, Mortezaee K. Angiogenesis as a hallmark of solid tumors - clinical perspectives. Cell Oncol. 2021;44:715–37.
Yehya AHS, Asif M, Petersen SH, Subramaniam AV, Kono K, Majid AMSA, et al. Angiogenesis: Managing the culprits behind tumorigenesis and metastasis. Medicina (Lithuania). 2018;54:8.
Jena MK, Janjanam J. Role of extracellular matrix in breast cancer development: A brief update. F1000Res. 2018;7.
Zuazo-Gaztelu I, Casanovas O. Unraveling the role of angiogenesis in cancer ecosystems. Front Oncol. 2018;8:248.
Article PubMed PubMed Central Google Scholar
Folkman J, Kalluri R. Beginning of angiogenesis research. In: Kufe DW, Pollock RE, Weichselbaum RR et al. editors. H-FCMedicine 6th edition. H (ON): BD. Beginning of angiogenesis research. Available from: https://www.ncbi.nlm.nih.gov/books/NBK13877/. 2003;1–31.
Hillen F, Griffioen AW. Tumour vascularization: Sprouting angiogenesis and beyond. Cancer Metastasis Rev. 2007;26:489–502.
Article PubMed PubMed Central Google Scholar
Saravanan S, Vimalraj S, Pavani K, Nikarika R, Sumantran VN. Intussusceptive angiogenesis as a key therapeutic target for cancer therapy. Life Sci. 2020;252:117670.
Article CAS PubMed Google Scholar
Wei X, Chen Y, Jiang X, Peng M, Liu Y, Mo Y, et al. Mechanisms of vasculogenic mimicry in hypoxic tumor microenvironments. Mol Cancer. 2021;20:1–18.
Jiang X, Wang J, Deng X, Xiong F, Zhang S, Gong Z, et al. The role of microenvironment in tumor angiogenesis. J Exp Clin Cancer Res. 2020;39:1–19.
Shen Y, Quan J, Wang M, Li S, Yang J, Lv M, et al. Tumor vasculogenic mimicry formation as an unfavorable prognostic indicator in patients with breast cancer. Oncotarget. 2017;8:56408–16.
Article PubMed PubMed Central Google Scholar
Lamalice L, Le Boeuf F, Huot J. Endothelial cell migration during angiogenesis. Circ Res. 2007;100:782–94.
Article CAS PubMed Google Scholar
Dallinga MG, Boas SE, Klaassen I, Merks RH, van Noorden CJ, Schlingemann RO. Tip Cells in Angiogenesis. eLS. 2015;1–10.
Huang CC, Kuo HM, Wu PC, Cheng SH, Chang TT, Chang YC, et al. Soluble delta-like 1 homolog (DLK1) stimulates angiogenesis through Notch1/Akt/eNOS signaling in endothelial cells. Angiogenesis. 2018;21:299–312.
Article CAS PubMed Google Scholar
Hida K, Maishi N, Annan DA, Hida Y. Contribution of tumor endothelial cells in cancer progression. Int J Mol Sci. 2018;19:1272.
Article PubMed PubMed Central Google Scholar
Akil A, Gutiérrez-García AK, Guenter R, Rose JB, Beck AW, Chen H, et al. Notch Signaling in Vascular Endothelial Cells, Angiogenesis, and Tumor Progression: An Update and Prospective. Front Cell Dev Biol. 2021;9:177.
Lin J, Lin Y, Su L, Su Q, Guo W, Huang X, et al. The role of Jagged1/Notch pathway-mediated angiogenesis of hepatocarcinoma cells in vitro, and the effects of the spleen-invigorating and blood stasis-removing recipe. Oncol Lett. 2017;14:3616–22.
Article PubMed PubMed Central Google Scholar
Fong GH, Takeda K. Role and regulation of prolyl hydroxylase domain proteins. Cell Death Differ. 2008;15:635–41.
Article CAS PubMed Google Scholar
Zhu Z, Hou Q, Guo H. NT5DC2 knockdown inhibits colorectal carcinoma progression by repressing metastasis, angiogenesis and tumor-associated macrophage recruitment: A mechanism involving VEGF signaling. Exp Cell Res. 2020;397: 112311.
Article CAS PubMed Google Scholar
Mezu-Ndubuisi OJ, Maheshwari A. The role of integrins in inflammation and angiogenesis. Pediatr Res. 2021;89:1619–26.
Xu S, Zhang H, Chong Y, Guan B, Guo P. YAP Promotes VEGFA Expression and Tumor Angiogenesis Though Gli2 in Human Renal Cell Carcinoma. Arch Med Res. 2019;50:225–33.
Article CAS PubMed Google Scholar
Zhu Q, Li J, Wu Q, Cheng Y, Zheng H, Zhan T, et al. Linc-OIP5 in the breast cancer cells regulates angiogenesis of human umbilical vein endothelial cells through YAP1/Notch/NRP1 signaling circuit at a tumor microenvironment. Biol Res. 2020;53:1–12.
Yeldag G, Rice A, Hernández A del R. Chemoresistance and the self-maintaining tumor microenvironment. Cancers (Basel). 2018;10.
Trédan O, Galmarini CM, Patel K, Tannock IF. Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst. 2007;99:1441–54.
Dewhirst MW, Secomb TW. Transport of drugs from blood vessels to tumour tissue. Nat Rev Cancer. 2017;17:738–50.
Article CAS PubMed PubMed Central Google Scholar
Rasouli SS, Jolma IW, Friis HA. Impact of spatially varying hydraulic conductivities on tumor interstitial fluid pressure distribution. Inform Med Unlocked. 2019;16:100175.
Garnier L, Gkountidi AO, Hugues S. Tumor-associated lymphatic vessel features and immunomodulatory functions. Front Immunol. 2019;10.
Less JR, Skalak TC, Sevick EM, Jain RK. Microvascular network architecture in a mammary carcinoma. EXS. 1992;61:74–80.
Baxter LT, Jain RK. Transport of fluid and macromolecules in tumors. II. Role of heterogeneous perfusion and lymphatics. Microvasc Res. 1990;40:246–63.
Article CAS PubMed Google Scholar
Baxter LT, Jain RK. Transport of fluid and macromolecules in tumors. I. Role of interstitial pressure and convection. Microvasc Res. 1989;37:77–104.
Article CAS PubMed Google Scholar
Raavé R, van Kuppevelt TH, Daamen WF. Chemotherapeut
留言 (0)