Deb U, Biswas S. Pretomanid: the latest USFDA-approved anti-tuberculosis drug. Indian J Tuberc. 2021;68:287–91.
Nguyen HT, Van Duong T, Jaw-Tsai S, Bruning-Barry R, Pande P, Taneja R, et al. Fed- and fasted-state performance of pretomanid amorphous solid dispersions formulated with an enteric polymer. Mol Pharm. 2023;20:3170–86.
Article CAS PubMed PubMed Central Google Scholar
Sutherland HS, Blaser A, Kmentova I, Franzblau SG, Wan B, Wang Y, et al. Synthesis and structure-activity relationships of antitubercular 2-nitroimidazooxazines bearing heterocyclic side chains. J Med Chem. 2010;53:855–66.
Article CAS PubMed Google Scholar
Dovprela (previously Pretomanid FGK)| European Medicines Agency [Internet]. https://www.ema.europa.eu/en/medicines/human/EPAR/dovprela-previously-pretomanid-fgk.
Winter H, Ginsberg A, Egizi E, Erondu N, Whitney K, Pauli E, et al. Effect of a high-calorie, high-fat meal on the bioavailability and pharmacokinetics of PA-824 in healthy adult subjects. Antimicrob Agents Chemother. 2013;57:5516–20.
Article CAS PubMed PubMed Central Google Scholar
Ang CW, Tan L, Qu Z, West NP, Cooper MA, Popat A, et al. Mesoporous silica nanoparticles improve oral delivery of antitubercular bicyclic nitroimidazoles. ACS Biomater Sci Eng. 2022;8:4196–206.
Article CAS PubMed Google Scholar
Van den Mooter G, Weuts I, De Ridder T, Blaton N. Evaluation of Inutec SP1 as a new carrier in the formulation of solid dispersions for poorly soluble drugs. Int J Pharm. 2006;316:1–6.
Chauhan B, Shimpi S, Paradkar A. Preparation and evaluation of glibenclamide-polyglycolized glycerides solid dispersions with silicon dioxide by spray drying technique. Eur J Pharm Sci. 2005;26:219–30.
Article CAS PubMed Google Scholar
Schver GCRM, Nadvorny D, Lee PI. Evolution of supersaturation from amorphous solid dispersions in water-insoluble polymer carriers: effects of swelling capacity and interplay between partition and diffusion. Int J Pharm. 2020;581:119292.
Article CAS PubMed Google Scholar
Saboo S, Moseson DE, Kestur US, Taylor LS. Patterns of drug release as a function of drug loading from amorphous solid dispersions: a comparison of five different polymers. Eur J Pharm Sci. 2020;155:105514.
Article CAS PubMed Google Scholar
Van Ngo H, Nguyen PK, Van Vo T, Duan W, Tran VT, Tran PHL, et al. Hydrophilic-hydrophobic polymer blend for modulation of crystalline changes and molecular interactions in solid dispersion. Int J Pharm. 2016;513:148–52.
Xie T, Taylor LS. Dissolution performance of high drug loading celecoxib amorphous solid dispersions formulated with polymer combinations. Pharm Res. 2016;33:739–50.
Article CAS PubMed Google Scholar
Tung NT, Tran CS, Nguyen TL, Pham TMH, Chi SC, Nguyen HA, et al. Effect of surfactant on the in vitro dissolution and the oral bioavailability of a weakly basic drug from an amorphous solid dispersion. Eur J Pharm Sci. 2021;162:105836.
Article CAS PubMed Google Scholar
Kapourani A, Tzakri T, Valkanioti V, Kontogiannopoulos KN, Barmpalexis P. Drug crystal growth in ternary amorphous solid dispersions: Effect of surfactants and polymeric matrix-carriers. Int J Pharm X. 2021;3:100086.
CAS PubMed PubMed Central Google Scholar
Butreddy A, Sarabu S, Almutairi M, Ajjarapu S, Kolimi P, Bandari S, et al. Hot-melt extruded hydroxypropyl methylcellulose acetate succinate based amorphous solid dispersions: impact of polymeric combinations on supersaturation kinetics and dissolution performance. Int J Pharm. 2022;615:121471.
Article CAS PubMed PubMed Central Google Scholar
Mukesh S, Joshi P, Bansal AK, Kashyap MC, Mandal SK, Sathe V, et al. Amorphous salts solid dispersions of celecoxib: enhanced biopharmaceutical performance and physical stability. Mol Pharm. 2021;18:2334–48.
Article CAS PubMed Google Scholar
Que C, Lou X, Zemlyanov DY, Mo H, Indulkar AS, Gao Y, et al. Insights into the dissolution behavior of ledipasvir-copovidone amorphous solid dispersions: role of drug loading and intermolecular interactions. Mol Pharm. 2019;16:5054–67.
Article CAS PubMed Google Scholar
Hiew TN, Taylor LS. Combining drug salt formation with amorphous solid dispersions– a double edged sword. J Control Release. 2022;352:47–60.
Article CAS PubMed PubMed Central Google Scholar
Mahmoudi ZN, Upadhye SB, Ferrizzi D, Rajabi-Siahboomi AR. In vitro characterization of a novel polymeric system for preparation of amorphous solid drug dispersions. AAPS J. 2014;16:685–97.
Article CAS PubMed PubMed Central Google Scholar
Baghel S, Cathcart H, Reilly NJO. Investigation into the solid-state properties and dissolution profile of spray-dried ternary amorphous solid dispersions: a rational step toward the design and development of a multicomponent amorphous system. Mol Pharm. 2018;15:3796–812.
Article CAS PubMed Google Scholar
Chougule M, Sirvi A, Saini V, Kashyap M, Sangamwar AT. Enhanced biopharmaceutical performance of brick dust molecule nilotinib via stabilized amorphous nanosuspension using a facile acid–base neutralization approach. Drug Deliv Transl Res. 2023;13:2503–19.
Article CAS PubMed Google Scholar
Wang L, Ma Y, Duan H, Yao J, Liang L, Zhang R, et al. Pharmacokinetics and tissue distribution study of PA-824 in rats by LC-MS/MS. J Chromatogr B Anal Technol Biomed Life Sci. 2015;1006:194–200.
Frizon F, Oliveira J, De, Maria C, Lina M, Maldonado J. Dissolution rate enhancement of loratadine in polyvinylpyrrolidone K-30 solid dispersions by solvent methods. Powder Technol. 2013;235:532–9.
Hiremath P, Nuguru K, Agrahari V. Material attributes and their impact on wet granulation process performance. Handb. Pharm. Wet granulation. Elsevier Inc.; 2019, pp. 263-315.
Amitava A, Li M, Patrick L, Brian M. Impact of polymer type on bioperformance and physical stability of hot melt extruded formulations of a poorly water soluble drug. Int J Pharm 2016; 505(1-2):107–14.
Frank DS, Matzger AJ. Effect of polymer hydrophobicity on the stability of amorphous solid dispersions and supersaturated solutions of a hydrophobic pharmaceutical. Mol Pharm. 2019; 16(2):682–88.
Meng F, Trivino A, Prasad D, Chauhan H. Investigation and correlation of drug polymer miscibility and molecular interactions by various approaches for the preparation of amorphous solid dispersions. Eur J Pharm Sci. 2015;71:12–24.
Article CAS PubMed Google Scholar
Baird JA, Taylor LS. Evaluation of amorphous solid dispersion properties using thermal analysis techniques. Adv Drug Deliv Rev. 2012;64:396–421.
Article CAS PubMed Google Scholar
Al-obaidi H, Ke P, Brocchini S, Buckton G. Characterization and stability of ternary solid dispersions with PVP and PHPMA. Int J Pharm. 2011;419:20–7.
Article CAS PubMed Google Scholar
Eedara BB, Fan C, Sinha S, Khadka P. Inhalable combination powder formulations for treating latent and multidrug-resistant tuberculosis: Formulation and in vitro characterization. Pharmaceutics. 2023;15:1–21.
Sethia S, Squillante E. Solid dispersion of carbamazepine in PVP K30 by conventional solvent evaporation and supercritical methods. Int J Pharm. 2004;272:1–10.
Article CAS PubMed Google Scholar
Zhang AQ, Zhao Y, Zhao Y, Fan Z, Zhang H, Liu M et al. Effect of HPMCAS on recrystallization inhibition of nimodipine solid dispersions prepared by hot melt extrusion and dissolution enhancement of nimodipine tablets. Colloids Surf B Biointerfaces. 2018.
Yu D, Li J, Wang H, Pan H, Li T, Bu T, et al. Role of polymers in the physical and chemical stability of amorphous solid dispersion: a case study of carbamazepine. Eur J Pharm Sci. 2022;169:106086.
Article CAS PubMed Google Scholar
Maruthamuthu M, Sobhana M. Hydrophobic interactions in the binding of polyvinylpyrrolidone. J Polym Sci Part Polym Chem. 1979;17:3159–67.
Wang Z, Lou H, Dening TJ, Hageman MJ. Biorelevant dissolution method considerations for the appropriate evaluation of amorphous solid dispersions: are two stages necessary? 2023;112:1089–107.
留言 (0)