Ali R, Mehta P, Arshad MS, Kucuk I, Chang M-W, Ahmad Z. Transdermal microneedles—a mater perspective. AAPS PharmSciTech. 2020;21:12. https://doi.org/10.1208/s12249-019-1560-3
Hegde NR, Kaveri SV, Bayry J. Recent advances in the administration of vaccines for infectious diseases: microneedles as painless delivery devices for mass vaccination. Drug Discov Today. 2011;16:1061–8. https://doi.org/10.1016/j.drudis.2011.07.004
Aich K, Singh T, Dang S. Advances in microneedle-based transdermal delivery for drugs and peptides. Drug Deliv Transl Res. 2022;12:1556–68. https://doi.org/10.1007/s13346-021-01056-8
Article CAS PubMed Google Scholar
Ita K. Transdermal delivery of drugs with microneedles—potential and challenges. Pharmaceutics. 2015;7:90–105. https://doi.org/10.3390/pharmaceutics7030090
Article CAS PubMed PubMed Central Google Scholar
Jeong WY, Kwon M, Choi HE, Kim KS. Recent advances in transdermal drug delivery systems: a review. Biomater Res. 2021;25:24. https://doi.org/10.1186/s40824-021-00226-6
Article PubMed PubMed Central Google Scholar
Chang H, Zheng M, Yu X, Than A, Seeni RZ, Kang R, et al. A swellable microneedle patch to rapidly extract skin interstitial fluid for timely metabolic analysis. Adv Mater. 2017;29:1702243. https://doi.org/10.1002/adma.201702243
Duarah S, Sharma M, Wen J. Recent advances in microneedle-based drug delivery: special emphasis on its use in paediatric population. Eur J Pharm Biopharm. 2019;136:48–69. https://doi.org/10.1016/j.ejpb.2019.01.005
Article CAS PubMed Google Scholar
Gadag S, Narayan R, Nayak AS, Catalina Ardila D, Sant S, Nayak Y, et al. Development and preclinical evaluation of microneedle-assisted resveratrol loaded nanostructured lipid carriers for localized delivery to breast cancer therapy. Int J Pharm. 2021;606:120877. https://doi.org/10.1016/j.ijpharm.2021.120877
Article CAS PubMed PubMed Central Google Scholar
Nayak AS, Chodisetti S, Gadag S, Nayak UY, Govindan S, Raval K. Tailoring solulan C24 based niosomes for transdermal delivery of donepezil: in vitro characterization, evaluation of pH sensitivity, and microneedle-assisted ex vivo permeation studies. J Drug Deliv Sci Technol. 2020;60:101945. https://doi.org/10.1016/j.jddst.2020.101945
Liu T, Luo G, Xing M. Biomedical Applications of Polymeric microneedles for Transdermal Therapeutic Delivery and diagnosis: current status and future perspectives. Adv Ther. 2020;3:1900140. https://doi.org/10.1002/adtp.201900140
Chen Z, Wu H, Zhao S, Chen X, Wei T, Peng H, et al. 3D-Printed Integrated Ultrasonic Microneedle array for Rapid Transdermal Drug Delivery. Mol Pharm. 2022;19:3314–22. https://doi.org/10.1021/acs.molpharmaceut.2c00466
Article CAS PubMed Google Scholar
Wang Y, Zeng L, Song W, Liu J. Influencing factors and drug application of iontophoresis in transdermal drug delivery: an overview of recent progress. Drug Deliv Transl Res. 2022;12:15–26. https://doi.org/10.1007/s13346-021-00898-6
Chen X, Zhu L, Li R, Pang L, Zhu S, Ma J, et al. Electroporation-enhanced transdermal drug delivery: effects of logP, pKa, solubility and penetration time. Eur J Pharm Sci. 2020;151:105410. https://doi.org/10.1016/j.ejps.2020.105410
Article CAS PubMed Google Scholar
Jung JH, Jin SG. Microneedle for transdermal drug delivery: current trends and fabrication. J Pharm Investig. 2021;51:503–17. https://doi.org/10.1007/s40005-021-00512-4
Article PubMed PubMed Central Google Scholar
Larrañeta E, Lutton REM, Woolfson AD, Donnelly RF. Microneedle arrays as transdermal and intradermal drug delivery systems: materials science, manufacture and commercial development. Mater Sci Eng R Rep. 2016;104:1–32. https://doi.org/10.1016/j.mser.2016.03.001
Erkus H, Bedir T, Kaya E, Tinaz GB, Gunduz O, Chifiriuc M-C, et al. Innovative transdermal drug delivery system based on Amoxicillin-loaded gelatin methacryloyl microneedles obtained by 3D printing. Materialia. 2023;27:101700. https://doi.org/10.1016/j.mtla.2023.101700
Yang Q, Zhong W, Xu L, Li H, Yan Q, She Y, et al. Recent progress of 3D-printed microneedles for transdermal drug delivery. Int J Pharm. 2021;593:120106. https://doi.org/10.1016/j.ijpharm.2020.120106
Article CAS PubMed Google Scholar
Xu X, Robles-Martinez P, Madla CM, Joubert F, Goyanes A, Basit AW, et al. Stereolithography (SLA) 3D printing of an antihypertensive polyprintlet: case study of an unexpected photopolymer-drug reaction. Addit Manuf. 2020;33:101071. https://doi.org/10.1016/j.addma.2020.101071
Economidou SN, Lamprou DA, Douroumis D. 3D printing applications for transdermal drug delivery. Int J Pharm. 2018;544:415–24. https://doi.org/10.1016/j.ijpharm.2018.01.031
Article CAS PubMed Google Scholar
Vaz VM, Kumar L. 3D Printing as a Promising Tool in Personalized Medicine. AAPS PharmSciTech. 2021;22:49. https://doi.org/10.1208/s12249-020-01905-8
Article CAS PubMed Google Scholar
Ligon SC, Liska R, Stampfl J, Gurr M, Mülhaupt R. Polymers for 3D Printing and customized Additive Manufacturing. Chem Rev. 2017;117:10212–90. https://doi.org/10.1021/acs.chemrev.7b00074
Article CAS PubMed PubMed Central Google Scholar
Dabbagh SR, Sarabi MR, Rahbarghazi R, Sokullu E, Yetisen AK, Tasoglu S. 3D-printed microneedles in biomedical applications. iScience. 2021;24:102012. https://doi.org/10.1016/j.isci.2020.102012
Article CAS PubMed Google Scholar
Fay CD, Wu L. Cost-effective 3D Printing of Silicone structures using an Advanced Intra-layer Curing Approach. Technologies. 2023;11:179. https://doi.org/10.3390/technologies11060179
Mike. How Is 3D Printing Cost Effective? 3D Print Parts. 2021. https://www.3dprintedparts.com/2021/01/15/how-is-3d-printing-cost-effective/ (accessed July 9, 2024).
Joo Y, Shin I, Ham G, Abuzar SM, Hyun S-M, Hwang S-J. The advent of a novel manufacturing technology in pharmaceutics: superiority of fused deposition modeling 3D printer. J Pharm Investig. 2020;50:131–45. https://doi.org/10.1007/s40005-019-00451-1
Goole J, Amighi K. 3D printing in pharmaceutics: a new tool for designing customized drug delivery systems. Int J Pharm. 2016;499:376–94. https://doi.org/10.1016/j.ijpharm.2015.12.071
Article CAS PubMed Google Scholar
Luzuriaga MA, Berry DR, Reagan JC, Smaldone RA, Gassensmith JJ. Biodegradable 3D printed polymer microneedles for transdermal drug delivery. Lab Chip. 2018;18:1223–30. https://doi.org/10.1039/C8LC00098K
Article CAS PubMed Google Scholar
Cordeiro AS, Tekko IA, Jomaa MH, Vora L, McAlister E, Volpe-Zanutto F, et al. Two-photon polymerisation 3D Printing of Microneedle array templates with versatile designs: application in the development of Polymeric Drug Delivery systems. Pharm Res. 2020;37:174. https://doi.org/10.1007/s11095-020-02887-9
Article CAS PubMed PubMed Central Google Scholar
Hull CW. Apparatus for production of three-dimensional objects by stereolithography 1984.
Lakkala P, Munnangi SR, Bandari S, Repka M. Additive manufacturing technologies with emphasis on stereolithography 3D printing in pharmaceutical and medical applications: a review. Int J Pharm X. 2023;5:100159. https://doi.org/10.1016/j.ijpx.2023.100159
Article CAS PubMed PubMed Central Google Scholar
Yeung C, Chen S, King B, Lin H, King K, Akhtar F, et al. A 3D-printed microfluidic-enabled hollow microneedle architecture for transdermal drug delivery. Biomicrofluidics. 2019;13. https://doi.org/10.1063/1.5127778
Uddin MJ, Scoutaris N, Economidou SN, Giraud C, Chowdhry BZ, Donnelly RF, et al. 3D printed microneedles for anticancer therapy of skin tumours. Mater Sci Eng C. 2020;107:110248. https://doi.org/10.1016/j.msec.2019.110248
留言 (0)