Bone marrow stromal cell antigen 2 is broadly expressed in the different pluripotent states of human pluripotent stem cells and regulates the expression of pluripotency genes and three germ layer markers

Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145–7.

Article  PubMed  CAS  Google Scholar 

Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–72.

Article  PubMed  CAS  Google Scholar 

Smith A. Formative pluripotency: the executive phase in a developmental continuum. Development. 2017;144:365–73.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Hackett JA, Surani MA. Regulatory principles of pluripotency: from the ground state up. Cell Stem Cell. 2014;15:416–30.

Article  PubMed  CAS  Google Scholar 

Kinoshita M, Barber M, Mansfield W, et al. Capture of mouse and human stem cells with features of formative pluripotency. Cell Stem Cell. 2021;28(453–71): e8.

Google Scholar 

Taei A, Rasooli P, Braun T, Hassani SN, Baharvand H. Signal regulators of human naive pluripotency. Exp Cell Res. 2020;389: 111924.

Article  PubMed  CAS  Google Scholar 

Collier AJ, Panula SP, Schell JP, et al. Comprehensive cell surface protein profiling identifies specific markers of human naive and primed pluripotent states. Cell Stem Cell. 2017;20(874–90): e7.

Google Scholar 

Bredenkamp N, Stirparo GG, Nichols J, Smith A, Guo G. The cell-surface marker sushi containing domain 2 facilitates establishment of human naive pluripotent stem cells. Stem Cell Reports. 2019;12:1212–22.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Wojdyla K, Collier AJ, Fabian C, et al. Cell-surface proteomics identifies differences in signaling and adhesion protein expression between naive and primed human pluripotent stem cells. Stem Cell Reports. 2020;14:972–88.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Trusler O, Huang Z, Goodwin J, Laslett AL. Cell surface markers for the identification and study of human naive pluripotent stem cells. Stem Cell Res. 2018;26:36–43.

Article  PubMed  CAS  Google Scholar 

Choi HS, Lee HM, Kim MK, Ryu CJ. Role of heat shock protein 60 in primed and naive states of human pluripotent stem cells. PLoS ONE. 2022;17: e0269547.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Zimmerlin L, Park TS, Huo JS, et al. Tankyrase inhibition promotes a stable human naive pluripotent state with improved functionality. Development. 2016;143:4368–80.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Choi HS, Kim H, Won A, et al. Development of a decoy immunization strategy to identify cell-surface molecules expressed on undifferentiated human embryonic stem cells. Cell Tissue Res. 2008;333:197–206.

Article  PubMed  CAS  Google Scholar 

Duggal G, Warrier S, Ghimire S, et al. Alternative routes to induce naive pluripotency in human embryonic stem cells. Stem Cells. 2015;33:2686–98.

Article  PubMed  CAS  Google Scholar 

Lee HM, Seo SR, Kim J, et al. Expression dynamics of integrin alpha2, alpha3, and alphaV upon osteogenic differentiation of human mesenchymal stem cells. Stem Cell Res Ther. 2020;11:210.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Huh S, Song HR, Jeong GR, et al. Suppression of the ERK-SRF axis facilitates somatic cell reprogramming. Exp Mol Med. 2018;50: e448.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kim JY, Kim SY, Choi HS, et al. Progesterone receptor membrane component 1 suppresses the p53 and Wnt/beta-catenin pathways to promote human pluripotent stem cell self-renewal. Sci Rep. 2018;8:3048.

Article  PubMed  PubMed Central  Google Scholar 

Gafni O, Weinberger L, Mansour AA, et al. Derivation of novel human ground state naive pluripotent stem cells. Nature. 2013;504:282–6.

Article  PubMed  CAS  Google Scholar 

Andrew AJ, Miyagi E, Kao S, Strebel K. The formation of cysteine-linked dimers of BST-2/tetherin is important for inhibition of HIV-1 virus release but not for sensitivity to Vpu. Retrovirology. 2009;6:80.

Article  PubMed  PubMed Central  Google Scholar 

Ying QL, Wray J, Nichols J, et al. The ground state of embryonic stem cell self-renewal. Nature. 2008;453:519–23.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Guo G, von Meyenn F, Rostovskaya M, et al. Epigenetic resetting of human pluripotency. Development. 2017;144:2748–63.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Rostovskaya M, Stirparo GG, Smith A. Capacitation of human naive pluripotent stem cells for multi-lineage differentiation. Development. 2019. https://doi.org/10.1242/dev.172916.

Article  PubMed  PubMed Central  Google Scholar 

Tiwari R, de la Torre JC, McGavern DB, Nayak D. Beyond tethering the viral particles: immunomodulatory functions of tetherin (BST-2). DNA Cell Biol. 2019;38:1170–7.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Yu H, Bian Q, Wang X, et al. Bone marrow stromal cell antigen 2: tumor biology, signaling pathway and therapeutic targeting (review). Oncol Rep. 2024. https://doi.org/10.3892/or.2024.8704.

Article  PubMed  PubMed Central  Google Scholar 

Florez MA, Matatall KA, Jeong Y, et al. Interferon gamma mediates hematopoietic stem cell activation and niche relocalization through BST2. Cell Rep. 2020;33: 108530.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kitao M, Hayashi R, Nomi K, et al. Identification of BST2 as a conjunctival epithelial stem/progenitor cell marker. iScience. 2023;26: 107016.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Yang P, Humphrey SJ, Cinghu S, et al. Multi-omic profiling reveals dynamics of the phased progression of pluripotency. Cell Syst. 2019;8(427–45): e10.

Google Scholar 

Rohani L, Borys BS, Razian G, et al. Stirred suspension bioreactors maintain naive pluripotency of human pluripotent stem cells. Commun Biol. 2020;3:492.

Article  PubMed  PubMed Central  CAS  Google Scholar 

留言 (0)

沒有登入
gif