Exosomal miR-146a-5p derived from bone marrow mesenchymal stromal cells regulate Th1/Th2 balance and alleviates immune thrombocytopenia in pregnancy

Jiang Y, Cheng Y, Ma S, et al. Systemic lupus erythematosus-complicating immune thrombocytopenia: from pathogenesis to treatment. J Autoimmun. 2022;132:102887. https://doi.org/10.1016/j.jaut.2022.102887.

Article  CAS  PubMed  Google Scholar 

Lambert MP, Gernsheimer TB. Clinical updates in adult immune thrombocytopenia. Blood. 2017;129(21):2829–35. https://doi.org/10.1182/blood-2017-03-754119.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cooper N, Ghanima W. Immune thrombocytopenia. N Engl J Med. 2019;381(10):945–55. https://doi.org/10.1056/NEJMcp1810479.

Article  PubMed  Google Scholar 

Guillet S, Loustau V, Boutin E, et al. Immune thrombocytopenia and pregnancy: an exposed/nonexposed cohort study. Blood. 2023;141(1):11–21. https://doi.org/10.1182/blood.2022017277.

Article  CAS  PubMed  Google Scholar 

Bussel JB, Hou M, Cines DB. Management of primary immune thrombocytopenia in pregnancy. N Engl J Med. 2023;389(6):540–8. https://doi.org/10.1056/NEJMra2214617.

Article  CAS  PubMed  Google Scholar 

Audia S, Mahévas M, Samson M, Godeau B, Bonnotte B. Pathogenesis of immune thrombocytopenia. Autoimmun Rev. 2017;16(6):620–32. https://doi.org/10.1016/j.autrev.2017.04.012.

Article  CAS  PubMed  Google Scholar 

Wang Q, Li J, Yu TS, et al. Disrupted balance of CD4(+) T-cell subsets in bone marrow of patients with primary immune thrombocytopenia. Int J Biol Sci. 2019;15(13):2798–814. https://doi.org/10.7150/ijbs.33779.

Article  PubMed  PubMed Central  Google Scholar 

Li W, Bai Z, Liu J, et al. Mitochondrial ROS-dependent CD4(+)PD-1(+)T cells are pathological expansion in patients with primary immune thrombocytopenia. Int Immunopharmacol. 2023;122:110597. https://doi.org/10.1016/j.intimp.2023.110597.

Article  CAS  PubMed  Google Scholar 

Liu SY, Qu HT, Sun RJ, Yuan D, Sui XH, Shan NN. High-throughput DNA methylation analysis in ITP confirms NOTCH1 hypermethylation through the Th1 and Th2 cell differentiation pathways. Int Immunopharmacol. 2022;111:109105. https://doi.org/10.1016/j.intimp.2022.109105.

Article  CAS  PubMed  Google Scholar 

Kostic M, Zivkovic N, Cvetanovic A, Marjanović G. CD4(+) T cell phenotypes in the pathogenesis of immune thrombocytopenia. Cell Immunol. 2020;351:104096. https://doi.org/10.1016/j.cellimm.2020.104096.

Article  CAS  PubMed  Google Scholar 

Liu Z, Wang M, Zhou S, et al. Pulsed high-dose dexamethasone modulates Th1-/Th2-chemokine imbalance in immune thrombocytopenia. J Transl Med. 2016;14(1):301. https://doi.org/10.1186/s12967-016-1064-9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Doyle LM, Wang MZ. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells. 2019. https://doi.org/10.3390/cells8070727.

Article  PubMed  PubMed Central  Google Scholar 

Mathieu M, Martin-Jaular L, Lavieu G, Théry C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol. 2019;21(1):9–17. https://doi.org/10.1038/s41556-018-0250-9.

Article  CAS  PubMed  Google Scholar 

Samuelson I, Vidal-Puig AJ. Fed-EXosome: extracellular vesicles and cell-cell communication in metabolic regulation. Essays Biochem. 2018;62(2):165–75. https://doi.org/10.1042/ebc20170087.

Article  PubMed  Google Scholar 

Bi Y, Qiao X, Liu Q, et al. Systemic proteomics and miRNA profile analysis of exosomes derived from human pluripotent stem cells. Stem Cell Res Ther. 2022;13(1):449. https://doi.org/10.1186/s13287-022-03142-1.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Diener C, Keller A, Meese E. Emerging concepts of miRNA therapeutics: from cells to clinic. Trends Genet. 2022;38(6):613–26. https://doi.org/10.1016/j.tig.2022.02.006.

Article  CAS  PubMed  Google Scholar 

He Y, Ji D, Lu W, et al. Bone marrow mesenchymal stem cell-derived exosomes induce the Th17/Treg imbalance in immune thrombocytopenia through miR-146a-5p/IRAK1 axis. Hum Cell. 2021;34(5):1360–74. https://doi.org/10.1007/s13577-021-00547-7.

Article  CAS  PubMed  Google Scholar 

Ye HX, Li L, Dong YJ, et al. miR-146a-5p improves the decidual cytokine microenvironment by regulating the toll-like receptor signaling pathway in unexplained spontaneous abortion. Int Immunopharmacol. 2020;89(Pt B):107066. https://doi.org/10.1016/j.intimp.2020.107066.

Article  CAS  PubMed  Google Scholar 

Yang C, Lim W, Park J, Park S, You S, Song G. Anti-inflammatory effects of mesenchymal stem cell-derived exosomal microRNA-146a-5p and microRNA-548e-5p on human trophoblast cells. Mol Hum Reprod. 2019;25(11):755–71. https://doi.org/10.1093/molehr/gaz054.

Article  CAS  PubMed  Google Scholar 

Hromadnikova I, Kotlabova K, Dvorakova L, Krofta L. Postpartum profiling of microRNAs involved in pathogenesis of cardiovascular/cerebrovascular diseases in women exposed to pregnancy-related complications. Int J Cardiol. 2019;291:158–67. https://doi.org/10.1016/j.ijcard.2019.05.036.

Article  PubMed  Google Scholar 

Hromadnikova I, Kotlabova K, Dvorakova L, Krofta L. Evaluation of vascular endothelial function in young and middle-aged women with respect to a history of pregnancy, pregnancy-related complications, classical cardiovascular risk factors, and epigenetics. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21020430.

Article  PubMed  PubMed Central  Google Scholar 

Douanne T, Chapelier S, Rottapel R, Gavard J, Bidère N. The LUBAC participates in lysophosphatidic acid-induced NF-κB activation. Cell Immunol. 2020;353:104133. https://doi.org/10.1016/j.cellimm.2020.104133.

Article  CAS  PubMed  Google Scholar 

Hou H, Li WX, Cui X, Zhou DC, Zhang B, Geng XP. CARMA3/NF-κB signaling contributes to tumorigenesis of hepatocellular carcinoma and is inhibited by sodium aescinate. World J Gastroenterol. 2019;25(36):5483–93. https://doi.org/10.3748/wjg.v25.i36.5483.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lei H, Ma Y, Tan J, Liu Q. Helicobacter pylori regulates the apoptosis of human megakaryocyte cells via NF-κB/IL-17 Signaling. Onco Targets Ther. 2021;14:2065–74. https://doi.org/10.2147/ott.S268056.

Article  PubMed  PubMed Central  Google Scholar 

Zhao Y, Ni X, Xu P, et al. Interleukin-37 reduces inflammation and impairs phagocytosis of platelets in immune thrombocytopenia (ITP). Cytokine. 2020;125:154853. https://doi.org/10.1016/j.cyto.2019.154853.

Article  CAS  PubMed  Google Scholar 

Zheng H, Xu J, Chu Y, et al. A global regulatory network for dysregulated gene expression and abnormal metabolic signaling in immune cells in the microenvironment of graves’ disease and hashimoto’s thyroiditis. Front Immunol. 2022;13:879824. https://doi.org/10.3389/fimmu.2022.879824.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang Y, Guo Y, Zhang X, et al. The role and mechanism of miR-557 in inhibiting the differentiation and maturation of megakaryocytes in immune thrombocytopenia. RNA Biol. 2021;18(11):1953–68. https://doi.org/10.1080/15476286.2021.1884783.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Provan D, Stasi R, Newland AC, et al. International consensus report on the investigation and management of primary immune thrombocytopenia. Blood. 2010;115(2):168–86. https://

留言 (0)

沒有登入
gif