Long non-coding RNA MSC-AS1 confers imatinib resistance of gastrointestinal stromal tumor cells by activating FNDC1 and ANLN-mediated PI3K/AKT pathway

Catalano F, Cremante M. Molecular tailored therapeutic options for advanced gastrointestinal stromal tumors (GISTs): current practice and future perspectives. Cancers. 2023. https://doi.org/10.3390/cancers15072074.

Article  PubMed  PubMed Central  Google Scholar 

Kwak HV, Tardy KJ, Allbee A, Stashek K, DeMatteo RP. Surgical management of germline gastrointestinal stromal tumor. Ann Surg Oncol. 2023. https://doi.org/10.1245/s10434-023-13519-y.

Article  PubMed  Google Scholar 

Naito Y, Nishida T, Doi T. Current status of and future prospects for the treatment of unresectable or metastatic gastrointestinal stromal tumours. Gastric Cancer Off J Int Gastric Cancer Assoc Jpn Gastric Cancer Assoc. 2023;26(3):339–51.

Google Scholar 

Wang J, Wang W, Ma F, Qian H. A hidden translatome in tumors-the coding lncRNAs. Sci China Life Sci. 2023. https://doi.org/10.1007/s11427-022-2289-6.

Article  PubMed  PubMed Central  Google Scholar 

Liu Y, Xun Z, Ma K, Liang S, Li X, Zhou S, et al. Identification of a tumour immune barrier in the HCC microenvironment that determines the efficacy of immunotherapy. J Hepatol. 2023;78(4):770–82.

Article  CAS  PubMed  Google Scholar 

Huang C, Wang M, Zhao WY, Shen YY, Zhuang C, Ni B, et al. Long noncoding RNA SPRY4-IT1 acts as a miR-101-5p sponge to promote gastrointestinal stromal tumor progression by inhibiting ZEB1. Am J Transl Res. 2023;15(2):1026–40.

CAS  PubMed  PubMed Central  Google Scholar 

Yang Z, Pu M, Dong X, Yang H, Chang W, Liu T, et al. CTCF-activated SNHG16 facilitates gastrointestinal stromal tumor by targeting miR-128-3p/CASC3 axis. Exp Cell Res. 2022;417(1): 113131.

Article  CAS  PubMed  Google Scholar 

Zhang J, Chen K, Tang Y, Luan X, Zheng X, Lu X, et al. LncRNA-HOTAIR activates autophagy and promotes the imatinib resistance of gastrointestinal stromal tumor cells through a mechanism involving the miR-130a/ATG2B pathway. Cell Death Dis. 2021;12(4):367.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cao K, Li M, Miao J, Lu X, Kang X, Zhu H, et al. CCDC26 knockdown enhances resistance of gastrointestinal stromal tumor cells to imatinib by interacting with c-KIT. Am J Transl Res. 2018;10(1):274–82.

CAS  PubMed  PubMed Central  Google Scholar 

Zhang N, Fang W, He X, Zheng Y, Gu D, Yan J, et al. Downregulation of lncRNA CCDC26 contributes to imatinib resistance in human gastrointestinal stromal tumors through IGF-1R upregulation. Mol Carcinog. 2019;52(6): e8399.

Google Scholar 

Li JH, Liu S, Zhou H, Qu LH, Yang JH. starBase v20: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucl Acids Res. 2014;42:D92–7.

Article  CAS  PubMed  Google Scholar 

Ye Y, Gao M, Tuo Z, Jiang Z, Chen Z, Wang J. Dysregulated ANLN reveals immune cell landscape and promotes carcinogenesis by regulating the PI3K/Akt/mTOR pathway in clear cell renal cell carcinoma. Cancers. 2024;10(1): e23522.

Google Scholar 

Zhu X, Zhang Y, Bian R, Zhu J, Shi W. ANLN promotes the proliferation and migration of gallbladder cancer cells via STRA6-mediated activation of PI3K/AKT signaling. Cancers. 2024. https://doi.org/10.3390/cancers16040752.

Article  PubMed  PubMed Central  Google Scholar 

Chen L, Liu J, Wang L, Yang X, Jiang Q, Ji F, et al. Up-regulated FNDC1 accelerates stemness and chemoradiation resistance in colorectal cancer cells. Biochem Biophys Res Commun. 2022;602:84–90.

Article  CAS  PubMed  Google Scholar 

Lu Y, Huang P, Zeng X, Liu W, Zhao R, Li J, et al. Inhibition of FNDC1 suppresses gastric cancer progression by interfering with Gβγ-VEGFR2 complex formation. iScience. 2023;26(9):107534.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao Y, Weng Z, Zhou X, Xu Z, Cao B, Wang B, et al. Mesenchymal stromal cells promote the drug resistance of gastrointestinal stromal tumors by activating the PI3K-AKT pathway via TGF-β2. J Transl Med. 2023;21(1):219.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kou X, Zhu J, Xie X, Hao M, Zhao Y. Expression of lncRNA MSC-AS1 in hepatocellular carcinoma cell lines and its effect on proliferation, apoptosis, and migration. Turk J Gastroenterol Off J Turk Soc Gastroenterol. 2020;31(12):860–7.

Article  Google Scholar 

Yao H, Yang L, Tian L, Guo Y, Li Y. LncRNA MSC-AS1 aggravates nasopharyngeal carcinoma progression by targeting miR-524-5p/nuclear receptor subfamily 4 group A member 2 (NR4A2). Cancer Med. 2020;20:138.

CAS  Google Scholar 

He C, Wang X. LncRNA MSC-AS1 promotes colorectal cancer progression by regulating miR-325/TRIM14 axis. J Oncol. 2021;2021:9954214.

Article  PubMed  PubMed Central  Google Scholar 

Liu Y, Li L, Wu X, Qi H, Gao Y, Li Y, et al. MSC-AS1 induced cell growth and inflammatory mediators secretion through sponging miR-142-5p/DDX5 in gastric carcinoma. Aging. 2021;13(7):10387–95.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu Y, Meng W, Cao H, Wang B. Identification of MSC-AS1, a novel lncRNA for the diagnosis of laryngeal cancer. Eur Arch Otorhinolaryngol. 2021;278(4):1107–18.

Article  PubMed  Google Scholar 

Ma Y, Jin Y, Li C, Liu Y, Wang D. LncRNA MSC-AS1 motivates the development of melanoma by binding to miR-302a-3p and recruiting IGF2BP2 to elevate LEF1 expression. Exp Dermatol. 2021;30(12):1764–74.

Article  CAS  PubMed  Google Scholar 

Zhao Y, Yuan D, Zhu D, Xu T, Huang A, Jiang L, et al. LncRNA-MSC-AS1 inhibits the ovarian cancer progression by targeting miR-425-5p. Exp Dermatol. 2021;14(1):109.

CAS  Google Scholar 

Luo N. lncRNA MSC-AS1/miRNA-429 axis mediates growth and metastasis of nasopharyngeal carcinoma via JAK1/STAT3 signaling pathway. Comput Math Methods Med. 2022;2022:1447207.

Article  PubMed  PubMed Central  Google Scholar 

Tian T, Luo B, Shen G, Ji G. LncRNA MSC-AS1, as an oncogene in melanoma, promotes the proliferation and glutaminolysis by regulating the miR-330-3p/ YAP1 axis. Anticancer Drugs. 2022;33(10):1012–23.

Article  CAS  PubMed  Google Scholar 

Li D, Li Q. MicroRNA-200b-3p restrains gastric cancer cell proliferation, migration, and invasion via C-X-C motif chemokine ligand 12/CXC chemokine receptor 7 axis. Bioengineered. 2022;13(3):6509–20.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gong W, Guo Y, Yuan H, Chai R, Wan Z, Zheng B, et al. Loss of exosomal miR-200b-3p from hypoxia cancer-associated fibroblasts promotes tumorigenesis and reduces sensitivity to 5-Flourouracil in colorectal cancer via upregulation of ZEB1 and E2F3. Cancer Gene Ther. 2023. https://doi.org/10.1038/s41417-023-00591-5.

Article  PubMed  PubMed Central  Google Scholar 

Chen S, Tu Y, Yuan H, Shi Z, Guo Y, Gong W, et al. Regulatory functions of miR-200b-3p in tumor development (Review). Cancer Gene Ther. 2022. https://doi.org/10.3892/or.2022.8307.

Article  PubMed  PubMed Central  Google Scholar 

Gyvyte U, Lukosevicius R, Inciuraite R, Streleckiene G, Gutyte G. The role of miR-375–3p and miR-200b-3p in gastrointestinal stromal tumors. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21145151.

Article  PubMed  PubMed Central  Google Scholar 

Skieceviciene J, Ding J. Identification of upstream miRNAs of SNAI2 and their influence on the metastasis of gastrointestinal stromal tumors. Int J Mol Sci. 2019;19:289.

Google Scholar 

Ren J, Niu G, Wang X, Song T, Hu Z, Ke C. Overexpression of FNDC1 in gastric cancer and its prognostic significance. J Cancer. 2018;9(24):4586–95.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yunwen C, Shanshan G, Zhifei B, Saijun C, Hua Y. The silencing of FNDC1 inhibits the tumorigenesis of breast cancer cells via modulation of the PI3K/Akt signaling pathway. Mol Med Rep. 2021. https://doi.org/10.3892/mmr.2021.12118.

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif