Catalano F, Cremante M. Molecular tailored therapeutic options for advanced gastrointestinal stromal tumors (GISTs): current practice and future perspectives. Cancers. 2023. https://doi.org/10.3390/cancers15072074.
Article PubMed PubMed Central Google Scholar
Kwak HV, Tardy KJ, Allbee A, Stashek K, DeMatteo RP. Surgical management of germline gastrointestinal stromal tumor. Ann Surg Oncol. 2023. https://doi.org/10.1245/s10434-023-13519-y.
Naito Y, Nishida T, Doi T. Current status of and future prospects for the treatment of unresectable or metastatic gastrointestinal stromal tumours. Gastric Cancer Off J Int Gastric Cancer Assoc Jpn Gastric Cancer Assoc. 2023;26(3):339–51.
Wang J, Wang W, Ma F, Qian H. A hidden translatome in tumors-the coding lncRNAs. Sci China Life Sci. 2023. https://doi.org/10.1007/s11427-022-2289-6.
Article PubMed PubMed Central Google Scholar
Liu Y, Xun Z, Ma K, Liang S, Li X, Zhou S, et al. Identification of a tumour immune barrier in the HCC microenvironment that determines the efficacy of immunotherapy. J Hepatol. 2023;78(4):770–82.
Article CAS PubMed Google Scholar
Huang C, Wang M, Zhao WY, Shen YY, Zhuang C, Ni B, et al. Long noncoding RNA SPRY4-IT1 acts as a miR-101-5p sponge to promote gastrointestinal stromal tumor progression by inhibiting ZEB1. Am J Transl Res. 2023;15(2):1026–40.
CAS PubMed PubMed Central Google Scholar
Yang Z, Pu M, Dong X, Yang H, Chang W, Liu T, et al. CTCF-activated SNHG16 facilitates gastrointestinal stromal tumor by targeting miR-128-3p/CASC3 axis. Exp Cell Res. 2022;417(1): 113131.
Article CAS PubMed Google Scholar
Zhang J, Chen K, Tang Y, Luan X, Zheng X, Lu X, et al. LncRNA-HOTAIR activates autophagy and promotes the imatinib resistance of gastrointestinal stromal tumor cells through a mechanism involving the miR-130a/ATG2B pathway. Cell Death Dis. 2021;12(4):367.
Article CAS PubMed PubMed Central Google Scholar
Cao K, Li M, Miao J, Lu X, Kang X, Zhu H, et al. CCDC26 knockdown enhances resistance of gastrointestinal stromal tumor cells to imatinib by interacting with c-KIT. Am J Transl Res. 2018;10(1):274–82.
CAS PubMed PubMed Central Google Scholar
Zhang N, Fang W, He X, Zheng Y, Gu D, Yan J, et al. Downregulation of lncRNA CCDC26 contributes to imatinib resistance in human gastrointestinal stromal tumors through IGF-1R upregulation. Mol Carcinog. 2019;52(6): e8399.
Li JH, Liu S, Zhou H, Qu LH, Yang JH. starBase v20: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucl Acids Res. 2014;42:D92–7.
Article CAS PubMed Google Scholar
Ye Y, Gao M, Tuo Z, Jiang Z, Chen Z, Wang J. Dysregulated ANLN reveals immune cell landscape and promotes carcinogenesis by regulating the PI3K/Akt/mTOR pathway in clear cell renal cell carcinoma. Cancers. 2024;10(1): e23522.
Zhu X, Zhang Y, Bian R, Zhu J, Shi W. ANLN promotes the proliferation and migration of gallbladder cancer cells via STRA6-mediated activation of PI3K/AKT signaling. Cancers. 2024. https://doi.org/10.3390/cancers16040752.
Article PubMed PubMed Central Google Scholar
Chen L, Liu J, Wang L, Yang X, Jiang Q, Ji F, et al. Up-regulated FNDC1 accelerates stemness and chemoradiation resistance in colorectal cancer cells. Biochem Biophys Res Commun. 2022;602:84–90.
Article CAS PubMed Google Scholar
Lu Y, Huang P, Zeng X, Liu W, Zhao R, Li J, et al. Inhibition of FNDC1 suppresses gastric cancer progression by interfering with Gβγ-VEGFR2 complex formation. iScience. 2023;26(9):107534.
Article CAS PubMed PubMed Central Google Scholar
Zhao Y, Weng Z, Zhou X, Xu Z, Cao B, Wang B, et al. Mesenchymal stromal cells promote the drug resistance of gastrointestinal stromal tumors by activating the PI3K-AKT pathway via TGF-β2. J Transl Med. 2023;21(1):219.
Article CAS PubMed PubMed Central Google Scholar
Kou X, Zhu J, Xie X, Hao M, Zhao Y. Expression of lncRNA MSC-AS1 in hepatocellular carcinoma cell lines and its effect on proliferation, apoptosis, and migration. Turk J Gastroenterol Off J Turk Soc Gastroenterol. 2020;31(12):860–7.
Yao H, Yang L, Tian L, Guo Y, Li Y. LncRNA MSC-AS1 aggravates nasopharyngeal carcinoma progression by targeting miR-524-5p/nuclear receptor subfamily 4 group A member 2 (NR4A2). Cancer Med. 2020;20:138.
He C, Wang X. LncRNA MSC-AS1 promotes colorectal cancer progression by regulating miR-325/TRIM14 axis. J Oncol. 2021;2021:9954214.
Article PubMed PubMed Central Google Scholar
Liu Y, Li L, Wu X, Qi H, Gao Y, Li Y, et al. MSC-AS1 induced cell growth and inflammatory mediators secretion through sponging miR-142-5p/DDX5 in gastric carcinoma. Aging. 2021;13(7):10387–95.
Article CAS PubMed PubMed Central Google Scholar
Liu Y, Meng W, Cao H, Wang B. Identification of MSC-AS1, a novel lncRNA for the diagnosis of laryngeal cancer. Eur Arch Otorhinolaryngol. 2021;278(4):1107–18.
Ma Y, Jin Y, Li C, Liu Y, Wang D. LncRNA MSC-AS1 motivates the development of melanoma by binding to miR-302a-3p and recruiting IGF2BP2 to elevate LEF1 expression. Exp Dermatol. 2021;30(12):1764–74.
Article CAS PubMed Google Scholar
Zhao Y, Yuan D, Zhu D, Xu T, Huang A, Jiang L, et al. LncRNA-MSC-AS1 inhibits the ovarian cancer progression by targeting miR-425-5p. Exp Dermatol. 2021;14(1):109.
Luo N. lncRNA MSC-AS1/miRNA-429 axis mediates growth and metastasis of nasopharyngeal carcinoma via JAK1/STAT3 signaling pathway. Comput Math Methods Med. 2022;2022:1447207.
Article PubMed PubMed Central Google Scholar
Tian T, Luo B, Shen G, Ji G. LncRNA MSC-AS1, as an oncogene in melanoma, promotes the proliferation and glutaminolysis by regulating the miR-330-3p/ YAP1 axis. Anticancer Drugs. 2022;33(10):1012–23.
Article CAS PubMed Google Scholar
Li D, Li Q. MicroRNA-200b-3p restrains gastric cancer cell proliferation, migration, and invasion via C-X-C motif chemokine ligand 12/CXC chemokine receptor 7 axis. Bioengineered. 2022;13(3):6509–20.
Article CAS PubMed PubMed Central Google Scholar
Gong W, Guo Y, Yuan H, Chai R, Wan Z, Zheng B, et al. Loss of exosomal miR-200b-3p from hypoxia cancer-associated fibroblasts promotes tumorigenesis and reduces sensitivity to 5-Flourouracil in colorectal cancer via upregulation of ZEB1 and E2F3. Cancer Gene Ther. 2023. https://doi.org/10.1038/s41417-023-00591-5.
Article PubMed PubMed Central Google Scholar
Chen S, Tu Y, Yuan H, Shi Z, Guo Y, Gong W, et al. Regulatory functions of miR-200b-3p in tumor development (Review). Cancer Gene Ther. 2022. https://doi.org/10.3892/or.2022.8307.
Article PubMed PubMed Central Google Scholar
Gyvyte U, Lukosevicius R, Inciuraite R, Streleckiene G, Gutyte G. The role of miR-375–3p and miR-200b-3p in gastrointestinal stromal tumors. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21145151.
Article PubMed PubMed Central Google Scholar
Skieceviciene J, Ding J. Identification of upstream miRNAs of SNAI2 and their influence on the metastasis of gastrointestinal stromal tumors. Int J Mol Sci. 2019;19:289.
Ren J, Niu G, Wang X, Song T, Hu Z, Ke C. Overexpression of FNDC1 in gastric cancer and its prognostic significance. J Cancer. 2018;9(24):4586–95.
Article CAS PubMed PubMed Central Google Scholar
Yunwen C, Shanshan G, Zhifei B, Saijun C, Hua Y. The silencing of FNDC1 inhibits the tumorigenesis of breast cancer cells via modulation of the PI3K/Akt signaling pathway. Mol Med Rep. 2021. https://doi.org/10.3892/mmr.2021.12118.
留言 (0)