Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74(3):229–63 (Epub 20240404).
Park W, Chawla A, O’Reilly EM. Pancreatic cancer: a review. JAMA. 2021;326(9):851–62.
Article CAS PubMed PubMed Central Google Scholar
Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014;74(11):2913–21.
Article CAS PubMed Google Scholar
Erkan M, Hausmann S, Michalski CW, Fingerle AA, Dobritz M, Kleeff J, et al. The role of stroma in pancreatic cancer: diagnostic and therapeutic implications. Nat Rev Gastroenterol Hepatol. 2012;9(8):454–67 (Epub 20120619).
Article CAS PubMed Google Scholar
Thomas D, Radhakrishnan P. Tumor-stromal crosstalk in pancreatic cancer and tissue fibrosis. Mol Cancer. 2019. https://doi.org/10.1186/s12943-018-0927-5.
Article PubMed PubMed Central Google Scholar
Wood LD, Canto MI, Jaffee EM, Simeone DM. Pancreatic cancer: pathogenesis, screening, diagnosis, and treatment. Gastroenterology. 2022;163(2):386-402 e1 (Epub 20220407).
Geng X, Chen H, Zhao L, Hu J, Yang W, Li G, et al. Cancer-associated fibroblast (CAF) heterogeneity and targeting therapy of CAFs in pancreatic cancer. Front Cell Dev Biol. 2021. https://doi.org/10.3389/fcell.2021.655152.
Article PubMed PubMed Central Google Scholar
Feig C, Gopinathan A, Neesse A, Chan DS, Cook N, Tuveson DA. The pancreas cancer microenvironment. Clin Cancer Res. 2012;18(16):4266–76.
Article CAS PubMed PubMed Central Google Scholar
Feng B, Wu J, Shen B, Jiang F, Feng J. Cancer-associated fibroblasts and resistance to anticancer therapies: status, mechanisms, and countermeasures. Cancer Cell Int. 2022. https://doi.org/10.1186/s12935-022-02599-7.
Article PubMed PubMed Central Google Scholar
Kennel KB, Bozlar M, De Valk AF, Greten FR. Cancer-associated fibroblasts in inflammation and antitumor immunity. Clin Cancer Res. 2023;29(6):1009–16.
Article CAS PubMed Google Scholar
Biffi G, Tuveson DA. Diversity and biology of cancer-associated fibroblasts. Physiol Rev. 2021;101(1):147–76 (Epub 20200528).
Article CAS PubMed Google Scholar
Öhlund D, Handly-Santana A, Biffi G, Elyada E, Almeida AS, Ponz-Sarvise M, et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J Exp Med. 2017;214(3):579–96.
Article PubMed PubMed Central Google Scholar
Elyada E, Bolisetty M, Laise P, Flynn WF, Courtois ET, Burkhart RA, et al. Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts. Cancer Discov. 2019;9(8):1102–23 (Epub 20190613).
Article CAS PubMed PubMed Central Google Scholar
Huang H, Zhang Y, Gallegos V, Sorrelle N, Zaid MM, Toombs J, et al. Targeting TGFβR2-mutant tumors exposes vulnerabilities to stromal TGFβ blockade in pancreatic cancer. EMBO Mol Med. 2019. https://doi.org/10.15252/emmm.201910515.
Article PubMed PubMed Central Google Scholar
Nagathihalli NS, Castellanos JA, VanSaun MN, Dai X, Ambrose M, Guo Q, et al. Pancreatic stellate cell secreted IL-6 stimulates STAT3 dependent invasiveness of pancreatic intraepithelial neoplasia and cancer cells. Oncotarget. 2016;7(40):65982–92.
Article PubMed PubMed Central Google Scholar
Kuno A, Ikehara Y, Tanaka Y, Ito K, Matsuda A, Sekiya S, et al. A serum “sweet-doughnut” protein facilitates fibrosis evaluation and therapy assessment in patients with viral hepatitis. Sci Rep. 2013;3:1065 (Epub 20130115).
Article PubMed PubMed Central Google Scholar
Uojima H, Nakabayashi K, Yamasaki K, Sugiyama M, Ishii N, Shirabe K, et al. New chemiluminescent enzyme immunoassay for quantitative measurement of Mac-2 binding protein glycosylation isomer in chronic liver disease. J Gastroenterol. 2023;58(12):1252–60 (Epub 20231008).
Article CAS PubMed Google Scholar
Uojima H, Yamasaki K, Sugiyama M, Kage M, Ishii N, Shirabe K, et al. Quantitative measurements of M2BPGi depend on liver fibrosis and inflammation. J Gastroenterol. 2024;59(7):598–608 (Epub 20240416).
Article CAS PubMed Google Scholar
Noro E, Matsuda A, Kyoutou T, Sato T, Tomioka A, Nagai M, et al. N-glycan structures of Wisteria floribunda agglutinin-positive Mac2 binding protein in the serum of patients with liver fibrosis. Glycobiology. 2021;31(10):1268–78.
Article CAS PubMed Google Scholar
Bekki Y, Yoshizumi T, Shimoda S, Itoh S, Harimoto N, Ikegami T, et al. Hepatic stellate cells secreting WFA(+) -M2BP: its role in biological interactions with Kupffer cells. J Gastroenterol Hepatol. 2017;32(7):1387–93.
Article CAS PubMed Google Scholar
Dolgormaa G, Harimoto N, Ishii N, Yamanaka T, Hagiwara K, Tsukagoshi M, et al. Mac-2-binding protein glycan isomer enhances the aggressiveness of hepatocellular carcinoma by activating mTOR signaling. Br J Cancer. 2020;123(7):1145–53.
Article CAS PubMed PubMed Central Google Scholar
Shirabe K, Bekki Y, Gantumur D, Araki K, Ishii N, Kuno A, et al. Mac-2 binding protein glycan isomer (M2BPGi) is a new serum biomarker for assessing liver fibrosis: more than a biomarker of liver fibrosis. J Gastroenterol. 2018;53(7):819–26.
Article CAS PubMed Google Scholar
Kono M, Nakamura Y, Oyama Y, Mori K, Hozumi H, Karayama M, et al. Increased levels of serum Wisteria floribunda agglutinin-positive Mac-2 binding protein in idiopathic pulmonary fibrosis. Respir Med. 2016;115:46–52.
Fujiyama T, Ito T, Ueda K, Tachibana Y, Yasunaga K, Miki M, et al. Serum levels of Wisteria floribunda agglutinin-positive Mac-2 binding protein reflect the severity of chronic pancreatitis. J Dig Dis. 2017;18(5):302–8.
Article CAS PubMed Google Scholar
Waragai Y, Suzuki R, Takagi T, Sugimoto M, Asama H, Watanabe K, et al. Clinical significance of serum Wisteria floribunda agglutinin-positive Mac-2 binding protein in pancreatic ductal adenocarcinoma. Pancreatology. 2016;16(6):1044–50 (Epub 2016/09/26).
Article CAS PubMed Google Scholar
Yamanaka T, Araki K, Yokobori T, Muranushi R, Hoshino K, Hagiwara K, et al. Potential of Mac-2-binding protein glycan isomer as a new therapeutic target in pancreatic cancer. Cancer Sci. 2024;115(4):1241–9.
Article CAS PubMed PubMed Central Google Scholar
Yamao T, Yamashita Y-I, Yamamura K, Nakao Y, Tsukamoto M, Nakagawa S, et al. Cellular senescence, represented by expression of caveolin-1, in cancer-associated fibroblasts promotes tumor invasion in pancreatic cancer. Ann Surg Oncol. 2019;26(5):1552–9.
Yu K, Chen B, Aran D, Charalel J, Yau C, Wolf DM, et al. Comprehensive transcriptomic analysis of cell lines as models of primary tumors across 22 tumor types. Nat Commun. 2019;10(1):3574 (Epub 20190808).
Article CAS PubMed PubMed Central Google Scholar
Chen Y, Kim J, Yang S, Wang H, Wu C-J, Sugimoto H, et al. Type I collagen deletion in αSMA+ myofibroblasts augments immune suppression and accelerates progression of pancreatic cancer. Cancer Cell. 2021;39(4):548-65.e6.
留言 (0)