Glyphosate exposure exacerbates neuroinflammation and Alzheimer’s disease-like pathology despite a 6-month recovery period in mice

2024 Alzheimer’s disease facts and figures. Alzheimers Dement J Alzheimers Assoc. 2024;20:3708–821.

Bakota L, Brandt R. Tau Biology and Tau-Directed therapies for Alzheimer’s Disease. Drugs. 2016;76:301–13.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol (Berl). 1991;82:239–59.

Article  CAS  PubMed  Google Scholar 

Vasefi M, Ghaboolian-Zare E, Abedelwahab H, Osu A. Environmental toxins and Alzheimer’s disease progression. Neurochem Int. 2020;141:104852.

Article  CAS  PubMed  Google Scholar 

Rahman MA, Rahman MS, Uddin MJ, Mamum-Or-Rashid ANM, Pang M-G, Rhim H. Emerging risk of environmental factors: insight mechanisms of Alzheimer’s diseases. Environ Sci Pollut Res. 2020;27:44659–72.

Article  Google Scholar 

Winstone JK, Pathak KV, Winslow W, Piras IS, White J, Sharma R, et al. Glyphosate infiltrates the brain and increases pro-inflammatory cytokine TNFα: implications for neurodegenerative disorders. J Neuroinflammation. 2022;19:193.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Benbrook CM. Trends in glyphosate herbicide use in the United States and globally. Environ Sci Eur. 2016;28:3.

Article  PubMed  PubMed Central  Google Scholar 

USGS NAWQA. The Pesticide National Synthesis Project [Internet]. [cited 2024 Feb 21]. https://water.usgs.gov/nawqa/pnsp/usage/maps/

Funke T, Han H, Healy-Fried ML, Fischer M, Schönbrunn E. Molecular basis for the herbicide resistance of Roundup Ready crops. Proc Natl Acad Sci U S A. 2006;103:13010–5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Martins-Gomes C, Silva TL, Andreani T, Silva AM. Glyphosate vs. glyphosate-based herbicides exposure: a review on their toxicity. J Xenobiotics. 2022;12:21–40.

Article  CAS  Google Scholar 

Agostini LP, Dettogni RS, Dos Reis RS, Stur E, Dos Santos EVW, Ventorim DP, et al. Effects of glyphosate exposure on human health: insights from epidemiological and in vitro studies. Sci Total Environ. 2020;705:135808.

Article  CAS  PubMed  Google Scholar 

Aitbali Y, Ba-M’hamed S, Elhidar N, Nafis A, Soraa N, Bennis M. Glyphosate based- herbicide exposure affects gut microbiota, anxiety and depression-like behaviors in mice. Neurotoxicol Teratol. 2018;67:44–9.

Article  CAS  PubMed  Google Scholar 

Izumi Y, O’Dell KA, Zorumski CF. The herbicide glyphosate inhibits hippocampal long-term potentiation and learning through activation of pro-inflammatory signaling. Res Sq. 2023;rs.3.rs-2883114.

Ren J, Yu Y, Wang Y, Dong Y, Shen X. Association between urinary glyphosate exposure and cognitive impairment in older adults from NHANES 2013–2014. J Alzheimers Dis JAD. 2024;97:609–20.

Article  CAS  PubMed  Google Scholar 

Yang A-M, Chu P-L, Wang C, Lin C-Y. Association between urinary glyphosate levels and serum neurofilament light chain in a representative sample of US adults: NHANES 2013–2014. J Expo Sci Environ Epidemiol. 2024;34:287–93.

Article  CAS  PubMed  Google Scholar 

Lehmann S, Schraen-Maschke S, Vidal J-S, Blanc F, Paquet C, Allinquant B, et al. Blood neurofilament levels predict Cognitive decline across the Alzheimer’s Disease Continuum. Int J Mol Sci. 2023;24:17361.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Williams GM, Kroes R, Munro IC. Safety evaluation and risk assessment of the herbicide Roundup and its active ingredient, glyphosate, for humans. Regul Toxicol Pharmacol RTP. 2000;31:117–65.

Article  CAS  PubMed  Google Scholar 

Panzacchi S, Mandrioli D, Manservisi F, Bua L, Falcioni L, Spinaci M, et al. The Ramazzini Institute 13-week study on glyphosate-based herbicides at human-equivalent dose in Sprague Dawley rats: study design and first in-life endpoints evaluation. Environ Health. 2018;17:52.

Article  PubMed  PubMed Central  Google Scholar 

Herrmann KM, Weaver LM. THE SHIKIMATE PATHWAY. Annu Rev Plant Physiol Plant Mol Biol. 1999;50:473–503.

Article  CAS  PubMed  Google Scholar 

Rueda-Ruzafa L, Cruz F, Roman P, Cardona D. Gut microbiota and neurological effects of glyphosate. Neurotoxicology. 2019;75:1–8.

Article  CAS  PubMed  Google Scholar 

Mesnage R, Antoniou MN. Computational modelling provides insight into the effects of glyphosate on the shikimate pathway in the human gut microbiome. Curr Res Toxicol. 2020;1:25–33.

Article  PubMed  PubMed Central  Google Scholar 

Kumar A, Editorial. Neuroinflammation and Cognition. Front Aging Neurosci. 2018;10:413.

Article  PubMed  PubMed Central  Google Scholar 

Guzman-Martinez L, Maccioni RB, Andrade V, Navarrete LP, Pastor MG, Ramos-Escobar N. Neuroinflammation as a common feature of neurodegenerative disorders. Front Pharmacol. 2019;10:1008.

Article  CAS  PubMed  PubMed Central  Google Scholar 

CHEN W-W ZHANGX, HUANG W-J. Role of neuroinflammation in neurodegenerative diseases (review). Mol Med Rep. 2016;13:3391–6.

Article  PubMed  PubMed Central  Google Scholar 

Gerona RR, Reiter JL, Zakharevich I, Proctor C, Ying J, Mesnage R, et al. Glyphosate exposure in early pregnancy and reduced fetal growth: a prospective observational study of high-risk pregnancies. Environ Health Glob Access Sci Source. 2022;21:95.

CAS  Google Scholar 

Cattani D, Struyf N, Steffensen V, Bergquist J, Zamoner A, Brittebo E, et al. Perinatal exposure to a glyphosate-based herbicide causes dysregulation of dynorphins and an increase of neural precursor cells in the brain of adult male rats. Toxicology. 2021;461:152922.

Article  CAS  PubMed  Google Scholar 

Cattani D, Pierozan P, Zamoner A, Brittebo E, Karlsson O. Long-Term effects of Perinatal exposure to a glyphosate-based herbicide on melatonin levels and oxidative brain damage in adult male rats. Antioxid Basel Switz. 2023;12:1825.

Article  CAS  Google Scholar 

Martinez A, Al-Ahmad AJ. Effects of glyphosate and aminomethylphosphonic acid on an isogeneic model of the human blood-brain barrier. Toxicol Lett. 2019;304:39–49.

Article  CAS  PubMed  Google Scholar 

Velazquez R, Tran A, Ishimwe E, Denner L, Dave N, Oddo S, et al. Central insulin dysregulation and energy dyshomeostasis in two mouse models of Alzheimer’s disease. Neurobiol Aging. 2017;58:1–13.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Winslow W, McDonough I, Tallino S, Decker A, Vural AS, Velazquez R. IntelliCage Automated behavioral phenotyping reveals Behavior deficits in the 3xTg-AD mouse model of Alzheimer’s Disease Associated with Brain Weight. Front Aging Neurosci. 2021;13:720214.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Velazquez R, Meechoovet B, Ow A, Foley C, Shaw A, Smith B, et al. Chronic Dyrk1 inhibition delays the Onset of AD-Like Pathology in 3xTg-AD mice. Mol Neurobiol. 2019;56:8364–75.

Article  CAS  PubMed  Google Scholar 

Jax Lab. 034830–3xTg-AD Strain Details [Internet]. 2014 [cited 2024 Jun 28]. https://www.jax.org/strain/004807#

Belfiore R, Rodin A, Ferreira E, Velazquez R, Branca C, Caccamo A, et al. Temporal and regional progression of Alzheimer’s disease-like pathology in 3xTg-AD mice. Aging Cell. 2019;18:e12873.

Article  PubMed  Google Scholar 

Roda AR, Montoliu-Gaya L, Serra-Mir G, Villegas S. Both Amyloid-β peptide and tau protein are affected by an Anti-Amyloid-β antibody fragment in Elderly 3xTg-AD mice. Int J Mol Sci. 2020;21:6630.

Article  CAS 

留言 (0)

沒有登入
gif