Lehka L, Rędowicz MJ. Mechanisms regulating myoblast fusion: a multilevel interplay. Semin Cell Dev Biol. 2020;104:81–92.
Yang JH, Chang MW, Pandey PR, Tsitsipatis D, Yang X, Martindale JL, et al. Interaction of OIP5-AS1 with MEF2C mRNA promotes myogenic gene expression. Nucleic Acids Res. 2020;48(22):12943–56.
Article CAS PubMed PubMed Central Google Scholar
Li Q, Wang Y, Hu X, Zhang Y, Li H, Zhang Q, et al. Transcriptional states and chromatin accessibility during bovine myoblasts proliferation and myogenic differentiation. Cell Prolif. 2022;55(5):e13219.
Article CAS PubMed PubMed Central Google Scholar
Rochlin K, Yu S, Roy S, Baylies MK. Myoblast fusion: when it takes more to make one. Dev Biol. 2010;341(1):66–83.
Article CAS PubMed Google Scholar
Doles JD, Olwin BB. Muscle stem cells on the edge. Curr Opin Genet Dev. 2015;34:24–8.
Article CAS PubMed Google Scholar
Yafe A, Shklover J, Weisman-Shomer P, Bengal E, Fry M. Differential binding of quadruplex structures of muscle-specific genes regulatory sequences by MyoD, MRF4 and myogenin. Nucleic Acids Res. 2008;36(12):3916–25.
Article CAS PubMed PubMed Central Google Scholar
Luo W, Li E, Nie Q, Zhang X. Myomaker, regulated by MYOD, MYOG and miR-140-3p, promotes chicken myoblast fusion. Int J Mol Sci. 2015;16(11):26186–201.
Article CAS PubMed PubMed Central Google Scholar
Quinn ME, Goh Q, Kurosaka M, Gamage DG, Petrany MJ, Prasad V, et al. Myomerger induces fusion of non-fusogenic cells and is required for skeletal muscle development. Nat Commun. 2017;8:15665.
Article CAS PubMed PubMed Central Google Scholar
Shi J, Bi P, Pei J, Li H, Grishin NV, Bassel-Duby R, et al. Requirement of the fusogenic micropeptide myomixer for muscle formation in zebrafish. Proc Natl Acad Sci U S A. 2017;114(45):11950–5.
Article CAS PubMed PubMed Central Google Scholar
Millay DP, Gamage DG, Quinn ME, Min YL, Mitani Y, Bassel-Duby R, et al. Structure-function analysis of myomaker domains required for myoblast fusion. Proc Natl Acad Sci U S A. 2016;113(8):2116–21.
Article CAS PubMed PubMed Central Google Scholar
He K, Ren T, Zhu S, Liang S, Zhao A. Transiently expressed pattern during myogenesis and candidate miRNAs of Tmem8C in goose. J Genet. 2017;96(1):39–46.
Article CAS PubMed Google Scholar
He J, Wang F, Zhang P, Li W, Wang J, Li J, et al. miR-491 inhibits skeletal muscle differentiation through targeting myomaker. Arch Biochem Biophys. 2017;625–626:30–8.
Fukao A, Fujiwara T. The coupled and uncoupled mechanisms by which trans-acting factors regulate mRNA stability and translation. J Biochem. 2017;161(4):309–14.
Luo EC, Nathanson JL, Tan FE, Schwartz JL, Schmok JC, Shankar A, et al. Large-scale tethered function assays identify factors that regulate mRNA stability and translation. Nat Struct Mol Biol. 2020;27(10):989–1000.
Article CAS PubMed PubMed Central Google Scholar
Castello A, Fischer B, Eichelbaum K, Horos R, Beckmann BM, Strein C, et al. Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell. 2012;149(6):1393–406.
Article CAS PubMed Google Scholar
Baltz AG, Munschauer M, Schwanhäusser B, Vasile A, Murakawa Y, Schueler M, et al. The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts. Mol Cell. 2012;46(5):674–90.
Article CAS PubMed Google Scholar
Lukong KE, Chang KW, Khandjian EW, Richard S. RNA-binding proteins in human genetic disease. Trends Genet. 2008;24(8):416–25.
Article CAS PubMed Google Scholar
Deng K, Liu Z, Li X, Ren C, Fan Y, Guo J, et al. Ythdf2-mediated STK11 mRNA decay supports myogenesis by inhibiting the AMPK/mTOR pathway. Int J Biol Macromol. 2023;254(Pt 1):127614.
Wei H, Xu Y, Lin L, Li Y, Zhu X. A review on the role of RNA methylation in aging-related diseases. Int J Biol Macromol. 2024;254:127769.
Article CAS PubMed Google Scholar
Bell JL, Wächter K, Mühleck B, Pazaitis N, Köhn M, Lederer M, et al. Insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs): post-transcriptional drivers of cancer progression? Cell Mol Life Sci. 2013;70(15):2657–75.
Article CAS PubMed Google Scholar
Liao B, Hu Y, Herrick DJ, Brewer G. The RNA-binding protein IMP-3 is a translational activator of insulin-like growth factor II leader-3 mRNA during proliferation of human K562 leukemia cells. J Biol Chem. 2005;280(18):18517–24.
Article CAS PubMed Google Scholar
Ge Y, Sun Y, Chen J. IGF-II is regulated by microRNA-125b in skeletal myogenesis. J Cell Biol. 2011;192(1):69–81.
Article CAS PubMed PubMed Central Google Scholar
Lin S, Luo W, Ye Y, Bekele EJ, Nie Q, Li Y, et al. Let-7b regulates myoblast proliferation by inhibiting IGF2BP3 expression in dwarf and normal chicken. Front Physiol. 2017;8:477.
Article PubMed PubMed Central Google Scholar
Yang Y, Fan X, Yan J, Chen M, Zhu M, Tang Y, et al. A comprehensive epigenome atlas reveals DNA methylation regulating skeletal muscle development. Nucleic Acids Res. 2021;49(3):1313–29.
Article CAS PubMed PubMed Central Google Scholar
de Oliveira G, Freire PP, Omoto ACM, Cury SS, Fuziwara CS, Kimura ET, et al. Osteoglycin post-transcriptional regulation by miR-155 induces cellular architecture changes in H9c2 cardiomyoblasts. Gene. 2018;676:9–15.
Kneppers A, Theret M, Larbi SB, Gsaier L, Saugues A, Dabadie C, et al. AMPKα2 is a skeletal muscle stem cell intrinsic regulator of myonuclear accretion. bioRxiv. 2022:2022.11.02.514556.
Lai WS, Arvola RM, Goldstrohm AC, Blackshear PJ. Inhibiting transcription in cultured metazoan cells with actinomycin D to monitor mRNA turnover. Methods. 2019;155:77–87.
Article CAS PubMed PubMed Central Google Scholar
Walsh CJ, Escudero King C, Gupta M, Plant PJ, Herridge MJ, Mathur S, et al. MicroRNA regulatory networks associated with abnormal muscle repair in survivors of critical illness. J Cachexia Sarcopenia Muscle. 2022;13(2):1262–76.
Article PubMed PubMed Central Google Scholar
Feng X-k, Xie C-d, Li Y-y, Wang Z-s, Bai L-j. SCSMRD: a database for single-cell skeletal muscle regeneration. J Integr Agric. 2023;22(3):864–71.
Maehara K, Tomimatsu K, Harada A, Tanaka K, Sato S, Fukuoka M, et al. Modeling population size independent tissue epigenomes by ChIL-seq with single thin sections. Mol Syst Biol. 2021;17(11):e10323.
Article CAS PubMed PubMed Central Google Scholar
Launay T, Hagström L, Lottin-Divoux S, Marchant D, Quidu P, Favret F, et al. Blunting effect of hypoxia on the proliferation and differentiation of human primary and rat L6 myoblasts is not counteracted by Epo. Cell Prolif. 2010;43(1):1–8.
留言 (0)