Allen KD, Thoma LM, Golightly YM. Epidemiology of osteoarthritis. Osteoarthr Cartil. 2022;30:184–95.
Srikanth VK, Fryer JL, Zhai G, Winzenberg TM, Hosmer D, Jones G. A meta-analysis of sex differences prevalence, incidence and severity of osteoarthritis1. Osteoarthr Cartil. 2005;13:769–81.
Stevens-Lapsley JE, Kohrt WM. Osteoarthritis in women: effects of estrogen, obesity and physical activity. Women’s Heal. 2010;6:601–15.
Laitner MH, Erickson LC, Group S, for WHRO, Ortman CPW. Understanding the impact of sex and gender in Osteoarthritis: assessing Research gaps and unmet needs. J Women’s Heal. 2021;30:634–41.
Szilagyi IA, Waarsing JH, van Meurs JBJ, Bierma-Zeinstra SMA, Schiphof D. A systematic review of the sex differences in risk factors for knee osteoarthritis. Rheumatol (Oxf Engl). 2022;62:2037–47.
Szilagyi IA, Waarsing JH, Schiphof D, van Meurs JBJ, Bierma-Zeinstra SMA. Towards sex-specific osteoarthritis risk models: evaluation of risk factors for knee osteoarthritis in males and females. Rheumatol (Oxf Engl). 2021;61:648–57.
Chen L, Zheng M, Chen Z, Peng Y, Jones C, Graves S, et al. The burden of end-stage osteoarthritis in Australia: a population-based study on the incidence of total knee replacement attributable to overweight/obesity. Osteoarthr Cartil. 2022;30:1254–62.
Batushansky A, Zhu S, Komaravolu RK, South S, Mehta-D’souza P, Griffin TM. Fundamentals of OA. An initiative of Osteoarthritis and Cartilage. Obesity and metabolic factors in OA. Osteoarthr Cartil. 2022;30:501–15.
Mauvais-Jarvis F, Arnold AP, Reue K. A guide for the design of pre-clinical studies on sex differences in metabolism. Cell Metab. 2017;25:1216–30.
Article CAS PubMed PubMed Central Google Scholar
Zaki S, Blaker CL, Little CB. OA foundations - experimental models of osteoarthritis. Osteoarthr Cartil. 2020;30:357–80.
Barboza E, Hudson J, Chang W-P, Kovats S, Towner RA, Silasi-Mansat R, et al. Profibrotic Infrapatellar Fat Pad Remodeling without M1 Macrophage polarization precedes knee osteoarthritis in mice with Diet-Induced obesity. Arthritis Rheumatol. 2017;69:1221–32.
Article CAS PubMed PubMed Central Google Scholar
Griffin TM, Huebner JL, Kraus VB, Yan Z, Guilak F. Induction of osteoarthritis and metabolic inflammation by a very high-fat diet in mice: effects of short-term exercise. Arthr Rhuem. 2012;64:443–53.
Donovan EL, Lopes EBP, Batushansky A, Kinter M, Griffin TM. Independent effects of dietary fat and sucrose content on chondrocyte metabolism and osteoarthritis pathology in mice. Dis Models Mech. 2018;11:dmm034827.
Hahn AK, Batushansky A, Rawle RA, Lopes EBP, June RK, Griffin TM. Effects of long-term exercise and a high-fat diet on synovial fluid metabolomics and joint structural phenotypes in mice: an integrated network analysis. Osteoarthr Cartil. 2021;29:1549–63.
Griffin TM, Fermor B, Huebner JL, Kraus VB, Rodriguiz RM, Wetsel WC, et al. Diet-induced obesity differentially regulates behavioral, biomechanical, and molecular risk factors for osteoarthritis in mice. Arthritis Res Therapy. 2010;12:R130.
Griffin TM, Batushansky A, Hudson J, Lopes EBP. Correlation network analysis shows divergent effects of a long-term, high-fat diet and exercise on early stage osteoarthritis phenotypes in mice. J Sport Health Sci. 2020;9:119–31.
Berenbaum F, Griffin TM, Liu-Bryan R, Review, Arthritis. & rheumatology (Hoboken, NJ). 2017;69:9–21.
Bhaskaran S, Pharaoh G, Ranjit R, Murphy A, Matsuzaki S, Nair BC, et al. Loss of mitochondrial protease ClpP protects mice from diet-induced obesity and insulin resistance. EMBO Rep. 2018;19:e45009.
Article PubMed PubMed Central Google Scholar
Batushansky A, Matsuzaki S, Newhardt MF, West MS, Griffin TM, Humphries KM. GC–MS metabolic profiling reveals fructose-2,6-bisphosphate regulates branched chain amino acid metabolism in the heart during fasting. Metabolomics. 2019;15:18.
Article PubMed PubMed Central Google Scholar
Prinz E, Schlupp L, Dyson G, Barrett M, Szymczak A, Velasco C, et al. OA susceptibility in mice is partially mediated by the gut microbiome, is transferrable via microbiome transplantation and is associated with immunophenotype changes. Ann Rheum Dis. 2024;83:382–93.
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7.
Article CAS PubMed PubMed Central Google Scholar
Amir A, McDonald D, Navas-Molina JA, Kopylova E, Morton JT, Xu ZZ, et al. Deblur rapidly resolves single-Nucleotide Community sequence patterns. mSystems. 2017;2:e00191–16.
Article PubMed PubMed Central Google Scholar
Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12:R60–60.
Article PubMed PubMed Central Google Scholar
Zhu S, Donovan EL, Makosa D, Mehta-D’souza P, Jopkiewicz A, Batushansky A, et al. Sirt3 promotes chondrogenesis, Chondrocyte Mitochondrial Respiration and the development of high‐Fat Diet‐Induced Osteoarthritis in mice. J Bone Min Res. 2022;37:2531–47.
Fu Y, Kinter M, Hudson J, Humphries KM, Lane RS, White JR, et al. Aging promotes sirtuin 3-Dependent cartilage superoxide dismutase 2 Acetylation and Osteoarthritis. Volume 68. Hoboken, NJ: Arthritis & rheumatology; 2016. pp. 1887–98.
Batushansky A, Lopes EBP, Zhu S, Humphries KM, Griffin TM. GC-MS method for metabolic profiling of mouse femoral head articular cartilage reveals distinct effects of tissue culture and development. Osteoarthr Cartil. 2019;27:1361–71.
Roemer FW, Guermazi A, Hannon MJ, Fujii T, Omoumi P, Hunter DJ, et al. Presence of MRI-defined inflammation particularly in overweight and obese women increases risk of radiographic knee osteoarthritis: the POMA study. Arthritis Care Res. 2021;74:1391–98.
Iena FM, Jul JB, Vegger JB, Lodberg A, Thomsen JS, Brüel A, et al. Sex-specific effect of High-Fat Diet on glycerol metabolism in murine adipose tissue and liver. Front Endocrinol. 2020;11:577650.
Singh P, Gollapalli K, Mangiola S, Schranner D, Yusuf MA, Chamoli M, et al. Taurine deficiency as a driver of aging. Science. 2023;380:eabn9257.
Article CAS PubMed PubMed Central Google Scholar
Arce NDR, Hum NR, Loots GG. Interactions between diabetes Mellitus and Osteoarthritis: from animal studies to Clinical Data. J Bone Min Res Plus. 2022;6:e10626.
Jansen NEJ, Molendijk E, Schiphof D, van Meurs JBJ, Oei EHG, van Middelkoop M, et al. Metabolic syndrome and the progression of knee osteoarthritis on MRI. Osteoarthr Cartil. 2023;31:647–55.
Staines KA, Poulet B, Wentworth DN, Pitsillides AA. The STR/ort mouse model of spontaneous osteoarthritis – an update. Osteoarthr Cartil. 2017;25:802–8.
Pevenage PMV, Birchmier JT, June RK. Utilizing metabolomics to identify potential biomarkers and perturbed metabolic pathways in osteoarthritis: a systematic review. Semin Arthritis Rheum. 2023;59:152163.
Article PubMed PubMed Central Google Scholar
van Gemert Y, Kruisbergen NNL, Blom AB, Bosch MHJ, van der van den, Kraan PM, Pieterman EJ, et al. IL-1β inhibition combined with cholesterol-lowering therapies decreases synovial lining thickness and spontaneous cartilage degeneration in a humanized dyslipidemia mouse model. Osteoarthr Cartil. 2023;31:340–50.
Li J, Zhang B, Liu W-X, Lu K, Pan H, Wang T, et al. Metformin limits osteoarthritis development and progression through activation of AMPK signalling. Ann Rheum Dis. 2020;79:635.
Article CAS PubMed Google Scholar
Little CB. Cholesterol, systemic inflammation, interleukin-1β, and osteoarthritis risk — aligning animal models with specific patient endotypes provides novel insights. Osteoarthr Cartil. 2023;31:298–9.
Mobasheri A, Rayman MP, Gualillo O, Sellam J, van der Kraan P, Fearon U. The role of metabolism in the pathogenesis of osteoarthritis. Nat Rev Rheumatol. 2017;13:302–11.
留言 (0)