ZC3H13 promotes autophagy in bladder cancer through m6A methylation modification of PJA2 and ubiquitination of KSR1

Lenis AT, Lec PM, Chamie K, et al. Bladder cancer: A review. JAMA. 2020;324(19):1980–91. https://doi.org/10.1001/jama.2020.17598.

Article  PubMed  CAS  Google Scholar 

Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49. https://doi.org/10.3322/caac.21660.

Article  PubMed  CAS  Google Scholar 

Dobruch J, Oszczudlowski M. Bladder cancer: Current challenges and future directions. Medicina (Kaunas). 2021;57(8):749. https://doi.org/10.3390/medicina57080749.

Article  PubMed  PubMed Central  Google Scholar 

Ahmadi H, Duddalwar V, Daneshmand S. Diagnosis and staging of bladder cancer. Hematol Oncol Clin North Am. 2021;35(3):531–41. https://doi.org/10.1016/j.hoc.2021.02.004.

Article  PubMed  Google Scholar 

Chung C, Seo W, Silwal P, et al. Crosstalks between inflammasome and autophagy in cancer. J Hematol Oncol. 2020;13(1):100. https://doi.org/10.1186/s13045-020-00936-9.

Article  PubMed  PubMed Central  Google Scholar 

Li F, Guo H, Yang Y, et al. Autophagy modulation in bladder cancer development and treatment (Review). Oncol Rep. 2019;42(5):1647–55. https://doi.org/10.3892/or.2019.7286.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Guo Y, Sun W, Gao W, et al. Long noncoding RNA H19 derived from M2 tumor-associated macrophages promotes bladder cell autophagy via stabilizing ULK1. J Oncol. 2022;2022:3465459. https://doi.org/10.1155/2022/3465459.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Liu B, Gao W, Sun W, et al. Promoting roles of long non-coding RNA FAM83H-AS1 in bladder cancer growth, metastasis, and angiogenesis through the c-Myc-mediated ULK3 upregulation. Cell Cycle. 2020;19(24):3546–62. https://doi.org/10.1080/15384101.2020.1850971.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Liu B, Sun W, Gao W, et al. microRNA-451a promoter methylation regulated by DNMT3B expedites bladder cancer development via the EPHA2/PI3K/AKT axis. BMC Cancer. 2020;20(1):1019. https://doi.org/10.1186/s12885-020-07523-8.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Sun T, Wu R, Ming L. The role of m6A RNA methylation in cancer. Biomed Pharmacother. 2019;112: 108613. https://doi.org/10.1016/j.biopha.2019.108613.

Article  PubMed  CAS  Google Scholar 

Li W, Wang X, Li C, et al. Identification and validation of an m6A-related gene signature to predict prognosis and evaluate immune features of breast cancer. Hum Cell. 2023;36(1):393–408. https://doi.org/10.1007/s13577-022-00826-x.

Article  PubMed  CAS  Google Scholar 

Yang L, Ying J, Tao Q, et al. RNA N(6)-methyladenosine modifications in urological cancers: from mechanism to application. Nat Rev Urol. 2024;21(8):460–76. https://doi.org/10.1038/s41585-023-00851-x.

Article  PubMed  CAS  Google Scholar 

Zang Q, Ju Y, Liu S, et al. The significance of m6A RNA methylation regulators in diagnosis and subtype classification of HBV-related hepatocellular carcinoma. Hum Cell. 2024;37(3):752–67. https://doi.org/10.1007/s13577-024-01044-3.

Article  PubMed  CAS  Google Scholar 

Murakami S, Jaffrey SR. Hidden codes in mRNA: Control of gene expression by m(6)A. Mol Cell. 2022;82(12):2236–51. https://doi.org/10.1016/j.molcel.2022.05.029.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Deng X, Su R, Weng H, et al. RNA N(6)-methyladenosine modification in cancers: Current status and perspectives. Cell Res. 2018;28(5):507–17. https://doi.org/10.1038/s41422-018-0034-6.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Wang T, Kong S, Tao M, et al. The potential role of RNA N6-methyladenosine in cancer progression. Mol Cancer. 2020;19(1):88. https://doi.org/10.1186/s12943-020-01204-7.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Zheng B, Wang J, Zhao G, et al. A new m6A methylation-related gene signature for prognostic value in patient with urothelial carcinoma of the bladder. Biosci Rep. 2021;41(4): BSR20204456. https://doi.org/10.1042/BSR20204456.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Zheng L, Xu H, Di Y, et al. ELK4 promotes the development of gastric cancer by inducing M2 polarization of macrophages through regulation of the KDM5A-PJA2-KSR1 axis. J Transl Med. 2021;19(1):342. https://doi.org/10.1186/s12967-021-02915-1.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kanomata N, Kurebayashi J, Koike Y, et al. CD1d- and PJA2-related immune microenvironment differs between invasive breast carcinomas with and without a micropapillary feature. BMC Cancer. 2019;19(1):76. https://doi.org/10.1186/s12885-018-5221-9.

Article  PubMed  PubMed Central  Google Scholar 

Rinaldi L, Delle Donne R, Sepe M, et al. praja2 regulates KSR1 stability and mitogenic signaling. Cell Death Dis. 2016;7(5): e2230. https://doi.org/10.1038/cddis.2016.109.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Maloney RC, Zhang M, Liu Y, et al. The mechanism of activation of MEK1 by B-Raf and KSR1. Cell Mol Life Sci. 2022;79(5):281. https://doi.org/10.1007/s00018-022-04296-0.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Huang Y, Zhen Y, Chen Y, et al. Unraveling the interplay between RAS/RAF/MEK/ERK signaling pathway and autophagy in cancer: From molecular mechanisms to targeted therapy. Biochem Pharmacol. 2023;217: 115842. https://doi.org/10.1016/j.bcp.2023.115842.

Article  PubMed  CAS  Google Scholar 

Wang Q, Xie H, Peng H, et al. ZC3H13 inhibits the progression of hepatocellular carcinoma through m(6)A-PKM2-mediated glycolysis and enhances chemosensitivity. J Oncol. 2021;2021:1328444. https://doi.org/10.1155/2021/1328444.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Zhu D, Zhou J, Zhao J, et al. ZC3H13 suppresses colorectal cancer proliferation and invasion via inactivating Ras-ERK signaling. J Cell Physiol. 2019;234(6):8899–907. https://doi.org/10.1002/jcp.27551.

Article  PubMed  CAS  Google Scholar 

Xie R, Chen W, Lv Y, et al. Overexpressed ZC3H13 suppresses papillary thyroid carcinoma growth through m6A modification-mediated IQGAP1 degradation. J Formos Med Assoc. 2023;122(8):738–46. https://doi.org/10.1016/j.jfma.2022.12.019.

Article  PubMed  CAS  Google Scholar 

Zhao Z, Zhu L, Xing Y, et al. Praja2 suppresses the growth of gastric cancer by ubiquitylation of KSR1 and inhibiting MEK-ERK signal pathways. Aging (Albany NY). 2021;13(3):3886–97. https://doi.org/10.18632/aging.202356.

Article  PubMed  CAS  Google Scholar 

Pan Z, Wei XJ, Li SJ, et al. Sulfated alginate oligosaccharide exerts anti-tumor activity and autophagy induction by inactivating MEK1/ERK/mTOR signaling in a KSR1-dependent manner in osteosarcoma. Oncogenesis. 2022;11(1):16. https://doi.org/10.1038/s41389-022-00390-x.

Article  PubMed 

留言 (0)

沒有登入
gif