Lenis AT, Lec PM, Chamie K, et al. Bladder cancer: A review. JAMA. 2020;324(19):1980–91. https://doi.org/10.1001/jama.2020.17598.
Article PubMed CAS Google Scholar
Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49. https://doi.org/10.3322/caac.21660.
Article PubMed CAS Google Scholar
Dobruch J, Oszczudlowski M. Bladder cancer: Current challenges and future directions. Medicina (Kaunas). 2021;57(8):749. https://doi.org/10.3390/medicina57080749.
Article PubMed PubMed Central Google Scholar
Ahmadi H, Duddalwar V, Daneshmand S. Diagnosis and staging of bladder cancer. Hematol Oncol Clin North Am. 2021;35(3):531–41. https://doi.org/10.1016/j.hoc.2021.02.004.
Chung C, Seo W, Silwal P, et al. Crosstalks between inflammasome and autophagy in cancer. J Hematol Oncol. 2020;13(1):100. https://doi.org/10.1186/s13045-020-00936-9.
Article PubMed PubMed Central Google Scholar
Li F, Guo H, Yang Y, et al. Autophagy modulation in bladder cancer development and treatment (Review). Oncol Rep. 2019;42(5):1647–55. https://doi.org/10.3892/or.2019.7286.
Article PubMed PubMed Central CAS Google Scholar
Guo Y, Sun W, Gao W, et al. Long noncoding RNA H19 derived from M2 tumor-associated macrophages promotes bladder cell autophagy via stabilizing ULK1. J Oncol. 2022;2022:3465459. https://doi.org/10.1155/2022/3465459.
Article PubMed PubMed Central CAS Google Scholar
Liu B, Gao W, Sun W, et al. Promoting roles of long non-coding RNA FAM83H-AS1 in bladder cancer growth, metastasis, and angiogenesis through the c-Myc-mediated ULK3 upregulation. Cell Cycle. 2020;19(24):3546–62. https://doi.org/10.1080/15384101.2020.1850971.
Article PubMed PubMed Central CAS Google Scholar
Liu B, Sun W, Gao W, et al. microRNA-451a promoter methylation regulated by DNMT3B expedites bladder cancer development via the EPHA2/PI3K/AKT axis. BMC Cancer. 2020;20(1):1019. https://doi.org/10.1186/s12885-020-07523-8.
Article PubMed PubMed Central CAS Google Scholar
Sun T, Wu R, Ming L. The role of m6A RNA methylation in cancer. Biomed Pharmacother. 2019;112: 108613. https://doi.org/10.1016/j.biopha.2019.108613.
Article PubMed CAS Google Scholar
Li W, Wang X, Li C, et al. Identification and validation of an m6A-related gene signature to predict prognosis and evaluate immune features of breast cancer. Hum Cell. 2023;36(1):393–408. https://doi.org/10.1007/s13577-022-00826-x.
Article PubMed CAS Google Scholar
Yang L, Ying J, Tao Q, et al. RNA N(6)-methyladenosine modifications in urological cancers: from mechanism to application. Nat Rev Urol. 2024;21(8):460–76. https://doi.org/10.1038/s41585-023-00851-x.
Article PubMed CAS Google Scholar
Zang Q, Ju Y, Liu S, et al. The significance of m6A RNA methylation regulators in diagnosis and subtype classification of HBV-related hepatocellular carcinoma. Hum Cell. 2024;37(3):752–67. https://doi.org/10.1007/s13577-024-01044-3.
Article PubMed CAS Google Scholar
Murakami S, Jaffrey SR. Hidden codes in mRNA: Control of gene expression by m(6)A. Mol Cell. 2022;82(12):2236–51. https://doi.org/10.1016/j.molcel.2022.05.029.
Article PubMed PubMed Central CAS Google Scholar
Deng X, Su R, Weng H, et al. RNA N(6)-methyladenosine modification in cancers: Current status and perspectives. Cell Res. 2018;28(5):507–17. https://doi.org/10.1038/s41422-018-0034-6.
Article PubMed PubMed Central CAS Google Scholar
Wang T, Kong S, Tao M, et al. The potential role of RNA N6-methyladenosine in cancer progression. Mol Cancer. 2020;19(1):88. https://doi.org/10.1186/s12943-020-01204-7.
Article PubMed PubMed Central CAS Google Scholar
Zheng B, Wang J, Zhao G, et al. A new m6A methylation-related gene signature for prognostic value in patient with urothelial carcinoma of the bladder. Biosci Rep. 2021;41(4): BSR20204456. https://doi.org/10.1042/BSR20204456.
Article PubMed PubMed Central CAS Google Scholar
Zheng L, Xu H, Di Y, et al. ELK4 promotes the development of gastric cancer by inducing M2 polarization of macrophages through regulation of the KDM5A-PJA2-KSR1 axis. J Transl Med. 2021;19(1):342. https://doi.org/10.1186/s12967-021-02915-1.
Article PubMed PubMed Central CAS Google Scholar
Kanomata N, Kurebayashi J, Koike Y, et al. CD1d- and PJA2-related immune microenvironment differs between invasive breast carcinomas with and without a micropapillary feature. BMC Cancer. 2019;19(1):76. https://doi.org/10.1186/s12885-018-5221-9.
Article PubMed PubMed Central Google Scholar
Rinaldi L, Delle Donne R, Sepe M, et al. praja2 regulates KSR1 stability and mitogenic signaling. Cell Death Dis. 2016;7(5): e2230. https://doi.org/10.1038/cddis.2016.109.
Article PubMed PubMed Central CAS Google Scholar
Maloney RC, Zhang M, Liu Y, et al. The mechanism of activation of MEK1 by B-Raf and KSR1. Cell Mol Life Sci. 2022;79(5):281. https://doi.org/10.1007/s00018-022-04296-0.
Article PubMed PubMed Central CAS Google Scholar
Huang Y, Zhen Y, Chen Y, et al. Unraveling the interplay between RAS/RAF/MEK/ERK signaling pathway and autophagy in cancer: From molecular mechanisms to targeted therapy. Biochem Pharmacol. 2023;217: 115842. https://doi.org/10.1016/j.bcp.2023.115842.
Article PubMed CAS Google Scholar
Wang Q, Xie H, Peng H, et al. ZC3H13 inhibits the progression of hepatocellular carcinoma through m(6)A-PKM2-mediated glycolysis and enhances chemosensitivity. J Oncol. 2021;2021:1328444. https://doi.org/10.1155/2021/1328444.
Article PubMed PubMed Central CAS Google Scholar
Zhu D, Zhou J, Zhao J, et al. ZC3H13 suppresses colorectal cancer proliferation and invasion via inactivating Ras-ERK signaling. J Cell Physiol. 2019;234(6):8899–907. https://doi.org/10.1002/jcp.27551.
Article PubMed CAS Google Scholar
Xie R, Chen W, Lv Y, et al. Overexpressed ZC3H13 suppresses papillary thyroid carcinoma growth through m6A modification-mediated IQGAP1 degradation. J Formos Med Assoc. 2023;122(8):738–46. https://doi.org/10.1016/j.jfma.2022.12.019.
Article PubMed CAS Google Scholar
Zhao Z, Zhu L, Xing Y, et al. Praja2 suppresses the growth of gastric cancer by ubiquitylation of KSR1 and inhibiting MEK-ERK signal pathways. Aging (Albany NY). 2021;13(3):3886–97. https://doi.org/10.18632/aging.202356.
Article PubMed CAS Google Scholar
Pan Z, Wei XJ, Li SJ, et al. Sulfated alginate oligosaccharide exerts anti-tumor activity and autophagy induction by inactivating MEK1/ERK/mTOR signaling in a KSR1-dependent manner in osteosarcoma. Oncogenesis. 2022;11(1):16. https://doi.org/10.1038/s41389-022-00390-x.
留言 (0)