Agren T (2014) Human reconsolidation: a reactivation and update. Brain Res Bull 105:70–82. https://doi.org/10.1016/j.brainresbull.2013.12.010
Akan M, Skorodumov I, Meinhardt MW, Canbeyli R, Unal G (2023) A shea butter-based ketamine ointment: the antidepressant effects of transdermal ketamine in rats. Behav Brain Res 452. https://doi.org/10.1016/j.bbr.2023.114594
Alessandri B, Bättig K, Welzl H (1989) Effects of ketamine on tunnel maze and water maze performance in the rat. Behav Neural Biology 52(2):194–212. https://doi.org/10.1016/S0163-1047(89)90313-0
Andrade C (2017) Ketamine for Depression, 4: in what dose, at what rate, by what Route, for how long, and at what frequency? J Clin Psychiatry 78(7):e852–e857. https://doi.org/10.4088/JCP.17f11738
Asim M, Hao B, Yang Y-H, Fan B-F, Xue L, Shi Y-W, Wang X-G, Zhao H (2020) Ketamine alleviates fear generalization through GluN2B-BDNF signaling in mice. Neurosci Bull 36(2):153–164. https://doi.org/10.1007/s12264-019-00422-4
Article CAS PubMed Google Scholar
Austin TR, Tamlyn RSP (1972) Ketamine: A Revolutionary Anaesthetic Agent for the Battle Casualty. J R Army Med Corps 118(1):15–23. https://doi.org/10.1136/jramc-118-01-04
Autry AE, Adachi M, Nosyreva E, Na ES, Los MF, Cheng P, Kavalali ET, Monteggia LM (2011) NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature 475(7354):91–95. https://doi.org/10.1038/nature10130
Article CAS PubMed PubMed Central Google Scholar
Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS, Krystal JH (2000) BRIEF REPORTS Antidepressant Effects of Ketamine in Depressed Patients. In Biol Psychiatry (Vol. 47)
Bouton ME (1993) Context, time, and memory retrieval in the interference paradigms of pavlovian learning. Psychol Bull 114(1):80–99. https://doi.org/10.1037/0033-2909.114.1.80
Article CAS PubMed Google Scholar
Brachman RA, McGowan JC, Perusini JN, Lim SC, Pham TH, Faye C, Gardier AM, Mendez-David I, David DJ, Hen R, Denny CA (2016) Ketamine as a prophylactic against stress-Induced depressive-like Behavior. Biol Psychiatry 79(9):776–786. https://doi.org/10.1016/j.biopsych.2015.04.022
Article CAS PubMed Google Scholar
Calzavara MB, Medrano WA, Levin R, Kameda SR, Andersen ML, Tufik S, Silva RH, Frussa-Filho R, Abílio VC (2009) Neuroleptic drugs revert the contextual fear conditioning deficit presented by spontaneously hypertensive rats: a potential animal model of emotional context processing in Schizophrenia? Schizophr Bull 35(4):748–759. https://doi.org/10.1093/schbul/sbn006
Cao Y-L, Zhang W, Ai Y-Q, Zhang W-X, Li Y (2014) Effect of propofol and ketamine anesthesia on cognitive function and immune function in young rats. Asian Pac J Trop Med 7(5):407–411. https://doi.org/10.1016/S1995-7645(14)60066-3
Article CAS PubMed Google Scholar
Cao T, Tang M, Jiang P, Zhang B, Wu X, Chen Q, Zeng C, Li N, Zhang S, Cai H (2021) A potential mechanism underlying the Therapeutic effects of Progesterone and Allopregnanolone on ketamine-Induced Cognitive deficits. Front Pharmacol 12. https://doi.org/10.3389/fphar.2021.612083
Carrier N, Kabbaj M (2013) Sex differences in the antidepressant-like effects of ketamine. Neuropharmacology 70:27–34. https://doi.org/10.1016/j.neuropharm.2012.12.009
Article CAS PubMed Google Scholar
Choi KH, Berman RY, Zhang M, Spencer HF, Radford KD (2020) Effects of ketamine on rodent fear memory. Int J Mol Sci (Vol 21:1–15. https://doi.org/10.3390/ijms21197173. MDPI AG
Corlett PR, Cambridge V, Gardner JM, Piggot JS, Turner DC, Everitt JC, Arana FS, Morgan HL, Milton AL, Lee JL, Aitken MRF, Dickinson A, Everitt BJ, Absalom AR, Adapa R, Subramanian N, Taylor JR, Krystal JH, Fletcher PC (2013) Ketamine effects on Memory Reconsolidation Favor a Learning Model of delusions. PLoS ONE 8(6):e65088. https://doi.org/10.1371/journal.pone.0065088
Article CAS PubMed PubMed Central Google Scholar
da Silva FCC, do Carmo de Oliveira Cito M, da Silva MIG, Moura BA, de Aquino Neto MR, Feitosa ML, de Castro Chaves R, Macedo DS, de Vasconcelos SMM, de França Fonteles MM, de Sousa FCF (2010) Behavioral alterations and pro-oxidant effect of a single ketamine administration to mice. Brain Res Bull 83(1–2):9–15. https://doi.org/10.1016/j.brainresbull.2010.05.011
Article CAS PubMed Google Scholar
de Souza IBMB, Meurer YDSR, Tavares PM, Pugliane KC, Lima RH, Silva RH, Barbosa FF (2019) Episodic-like memory impairment induced by sub-anaesthetic doses of ketamine. Behav Brain Res 359:165–171. https://doi.org/10.1016/j.bbr.2018.10.031
Article CAS PubMed Google Scholar
Duan TT, Tan JW, Yuan Q, Cao J, Zhou QX, Xu L (2013) Acute ketamine induces hippocampal synaptic depression and spatial memory impairment through dopamine D1/D5 receptors. Psychopharmacology 228(3):451–461. https://doi.org/10.1007/s00213-013-3048-2
Article CAS PubMed Google Scholar
Duvarci S, Nader K (2004) Characterization of fear memory reconsolidation. J Neurosci 24:9269–9275
Article CAS PubMed PubMed Central Google Scholar
Ecevitoglu A, Canbeyli R, Unal G (2019) Oral ketamine alleviates behavioral despair without cognitive impairment in Wistar rats. Behav Brain Res 372. https://doi.org/10.1016/j.bbr.2019.112058
Engin E, Treit D, Dickson CT (2009) Anxiolytic- and antidepressant-like properties of ketamine in behavioral and neurophysiological animal models. Neuroscience 161(2):359–369. https://doi.org/10.1016/j.neuroscience.2009.03.038
Article CAS PubMed Google Scholar
Enomoto T, Floresco SB (2009) Disruptions in spatial working memory, but not short-term memory, induced by repeated ketamine exposure. Prog Neuropsychopharmacol Biol Psychiatry 33(4):668–675. https://doi.org/10.1016/j.pnpbp.2009.03.013
Article CAS PubMed Google Scholar
Garcia LS, Comim CM, Valvassori SS, Réus GZ, Andreazza AC, Stertz L, Fries GR, Gavioli EC, Kapczinski F, Quevedo J (2008) Chronic Administration of Ketamine elicits antidepressant-like effects in rats without affecting hippocampal brain‐derived neurotrophic factor protein levels. Basic Clin Pharmacol Toxicol 103(6):502–506. https://doi.org/10.1111/j.1742-7843.2008.00210.x
Article CAS PubMed Google Scholar
Gass N, Becker R, Reinwald J, Cosa-Linan A, Sack M, Weber-Fahr W, Vollmayr B, Sartorius A (2019) Differences between ketamine’s short-term and long-term effects on brain circuitry in depression. Translational Psychiatry 9(1). https://doi.org/10.1038/s41398-019-0506-6
Girgenti MJ, Ghosal S, LoPresto D, Taylor JR, Duman RS (2017) Ketamine accelerates fear extinction via mTORC1 signaling. Neurobiol Dis 100:1–8. https://doi.org/10.1016/j.nbd.2016.12.026
Article CAS PubMed Google Scholar
Gokalp D, Unal G (2024) The role of mGluR5 on the therapeutic effects of ketamine in Wistar rats. Psychopharmacology. https://doi.org/10.1007/s00213-024-06571-3
Article PubMed PubMed Central Google Scholar
Goulart BK, de Lima MNM, de Farias CB, Reolon GK, Almeida VR, Quevedo J, Kapczinski F, Schröder N, Roesler R (2010) Ketamine impairs recognition memory consolidation and prevents learning-induced increase in hippocampal brain-derived neurotrophic factor levels. Neuroscience 167(4):969–973. https://doi.org/10.1016/j.neuroscience.2010.03.032
Article CAS PubMed Google Scholar
Holubova K, Kleteckova L, Skurlova M, Ricny J, Stuchlik A, Vales K (2016) Rapamycin blocks the antidepressant effect of ketamine in task-dependent manner. Psychopharmacology 233(11):2077–2097. https://doi.org/10.1007/s00213-016-4256-3
Article CAS PubMed Google Scholar
Honsberger MJ, Taylor JR, Corlett PR (2015) Memories reactivated under ketamine are subsequently stronger: a potential pre-clinical behavioral model of psychosis. Schizophr Res 164(1–3):227–233. https://doi.org/10.1016/j.schres.2015.02.009
Article PubMed PubMed Central Google Scholar
Ide S, Ikekubo Y, Mishina M, Hashimoto K, Ikeda K (2019) Cognitive impairment that is Induced by (R)-Ketamine is abolished in NMDA GluN2D receptor subunit knockout mice. Int J Neuropsychopharmacol 22(7):449–452. https://doi.org/10.1093/ijnp/pyz025
Article CAS PubMed PubMed Central Google Scholar
Imre G, Fokkema DS, Boer JA, Den, Ter Horst GJ (2006) Dose–response characteristics of ketamine effect on locomotion, cognitive function and central neuronal activity. Brain Res Bull 69(3):338–345.
留言 (0)