Ahsan HM, de la Pena JBI, Botanas CJ, Kim HJ, Yu GY, Cheong JH (2014) Conditioned place preference and self-administration induced by nicotine in adolescent and adult rats. Biomol Ther 22(5):460–466. https://doi.org/10.4062/biomolther.2014.056
ASH (2023) ASH Year 10 Snapshot Survey 2023 Topline – Youth smoking and vaping. . Retrieved from http://ash.org.nz/ash_year_10. Accessed 21 Oct 2024
Baker LK, Mao DY, Chi HR, Govind AP, Vallejo YF, Iacoviello M, ... Vezina P (2013) Intermittent nicotine exposure upregulates nAChRs in VTA dopamine neurons and sensitises locomotor responding to the drug. Eur J Neurosci 37(6):1004–1011. https://doi.org/10.1111/ejn.12114
Balfour DJ (2009) The neuronal pathways mediating the behavioral and addictive properties of nicotine. Handb Exp Pharmacol 192:209–233. https://doi.org/10.1007/978-3-540-69248-5_8
Benowitz NL (2009) Pharmacology of nicotine: addiction, smoking-induced disease, and therapeutics. Annu Rev Pharmacol Toxicol 49:57–71. https://doi.org/10.1146/annurev.pharmtox.48.113006.094742
Article PubMed PubMed Central CAS Google Scholar
Benowitz NL (2010) Nicotine addiction. N Engl J Med 362(24):2295–2303. https://doi.org/10.1056/NEJMra0809890
Article PubMed PubMed Central CAS Google Scholar
Brennan KA, Putt F, Roper V, Waterhouse U, Truman P (2013) Nicotine and tobacco particulate self-administration: effects of mecamylamine SCH23390and ketanserin pretreatment. Curr Psychopharmacol 2(3):229–240. https://doi.org/10.2174/22115560113029990004
Brennan KA, Putt F, Truman P (2013b) Nicotine-, tobacco particulate matter- and methamphetamine-produced locomotor sensitisation in rats. Psychopharmacology 228(4):659–672. https://doi.org/10.1007/s00213-013-3071-3
Article PubMed CAS Google Scholar
Brennan KA, Crowther A, Putt F, Roper V, Waterhouse U, Truman P (2015) Tobacco particulate matter self-administration in rats: differential effects of tobacco type. Addict Biol 20(2):227–235. https://doi.org/10.1111/adb.12099
Article PubMed CAS Google Scholar
Carreno D, Lotfipour S (2022) Sex- and genotype-dependent nicotine plus cue-primed reinstatement is enhanced in adolescent Sprague Dawley rats containing the human CHRNA6 3’-UTR polymorphism (rs2304297). Front Psychiatry 13:1064211. https://doi.org/10.3389/fpsyt.2022.1064211
Costello MR, Reynaga DD, Mojica CY, Zaveri NT, Belluzzi JD, Leslie FM (2014) Comparison of the reinforcing properties of nicotine and cigarette smoke extract in rats. Neuropsychopharmacol 39(8):1843–1851. https://doi.org/10.1038/npp.2014.31
DiFranza JR, Wellman RJ (2007) Sensitization to nicotine: how the animal literature might inform future human research. Nicotine Tob Res 9(1):9–20. https://doi.org/10.1080/14622200601078277
Article PubMed CAS Google Scholar
Ding Z, Li X, Chen H, Hou H, Hu Q (2022) Harmane potentiates nicotine reinforcement through MAO-A inhibition at the dose related to cigarette smoking. Front Mol Neurosci 15:925272. https://doi.org/10.3389/fnmol.2022.925272
Article PubMed PubMed Central CAS Google Scholar
Gellner CA, Belluzzi JD, Leslie FM (2016) Self-administration of nicotine and cigarette smoke extract in adolescent and adult rats. Neuropharmacology 109:247–253. https://doi.org/10.1016/j.neuropharm.2016.06.026
Article PubMed PubMed Central CAS Google Scholar
Gellner CA, Carreno D, Belluzzi JD, Leslie FM (2023) Impact of tobacco smoke constituents on nicotine-seeking behavior in adolescent and adult male rats. Front Psychiatry 14:1096213. https://doi.org/10.3389/fpsyt.2023.1096213
Article PubMed PubMed Central Google Scholar
Gomes MN, Reid JL, Rynard VL, East KA, Goniewicz ML, Piper ME, Hammond D (2024) Comparison of indicators of dependence for vaping and smoking: trends between 2017 and 2022 among youth in Canada, England and the United States. Nicotine Tob Res. https://doi.org/10.1093/ntr/ntae060
Guillem K, Vouillac C, Azar MR, Parsons LH, Koob GF, Cador M, Stinus L (2005) Monoamine oxidase inhibition dramatically increases the motivation to self-administer nicotine in rats. J Neurosci 25(38):8593–8600. https://doi.org/10.1523/JNEUROSCI.2139-05.2005
Article PubMed PubMed Central CAS Google Scholar
Guillem K, Vouillac C, Koob GF, Cador M, Stinus L (2008) Monoamine oxidase inhibition dramatically prolongs the duration of nicotine withdrawal-induced place aversion. Biol Psychiat 63(2):158–163. https://doi.org/10.1016/j.biopsych.2007.04.029
Article PubMed CAS Google Scholar
Hall BJ, Wells C, Allenby C, Lin MY, Hao I, Marshall L, ... Levin ED (2014) Differential effects of non-nicotine tobacco constituent compounds on nicotine self-administration in rats. Pharmacol Biochem Behav 120:103–108. https://doi.org/10.1016/j.pbb.2014.02.011
Hogg RC (2016) Contribution of monoamine oxidase inhibition to tobacco dependence: a review of the evidence. Nicotine Tob Res 18(5):509–523. https://doi.org/10.1093/ntr/ntv245
Article PubMed CAS Google Scholar
Hong SW, Teesdale-Spittle P, Page R, Truman P (2022) A review of monoamine oxidase (MAO) inhibitors in tobacco or tobacco smoke. Neurotoxicology 93:163–172. https://doi.org/10.1016/j.neuro.2022.09.008
Article PubMed CAS Google Scholar
Hong SW (2023) Biochemical characterisation of six novel monoamine oxidase inhibitors identified in tobacco smoke. (PhD). Massey University
Krishnan N, Berg CJ, Elmi AF, Klemperer EM, Sherman SE, Abroms LC (2024) Trajectories of ENDS and cigarette use among dual users: analysis of waves 1 to 5 of the PATH Study. Tob Control 33(e1):e62–e68. https://doi.org/10.1136/tc-2022-057405
Lallai V, Chen YC, Roybal MM, Kotha ER, Fowler JP, Staben A, ... Fowler CD (2021) Nicotine e-cigarette vapor inhalation and self-administration in a rodent model: Sex- and nicotine delivery-specific effects on metabolism and behavior. Addict Biol. https://doi.org/10.1111/adb.13024
Le Foll B, Goldberg SR (2006) Nicotine as a typical drug of abuse in experimental animals and humans. Psychopharmacology 184(3–4):367–381. https://doi.org/10.1007/s00213-005-0155-8
Article PubMed CAS Google Scholar
Le Foll B, Goldberg SR (2009) Effects of nicotine in experimental animals and humans: an update on addictive properties. Handb Exp Pharmacol 192:335–367. https://doi.org/10.1007/978-3-540-69248-5_12
Lewis AJ, Miller JH, Lea RA (2007) Monoamine oxidase and tobacco dependence. Neurotoxicology 28:182–195. https://doi.org/10.1016/j.neuro.2006.05.019
Article PubMed CAS Google Scholar
Lindson N, Butler AR, McRobbie H, Bullen C, Hajek P, Begh R, ... Hartmann-Boyce J (2024) Electronic cigarettes for smoking cessation. Cochrane Database Syst Rev 1(1):CD010216. https://doi.org/10.1002/14651858.CD010216.pub8
Moen JK, Lee AM (2021) Sex differences in the nicotinic acetylcholine receptor system of rodents: impacts on nicotine and alcohol reward behaviors. Front Neurosci 15:745783. https://doi.org/10.3389/fnins.2021.745783
Article PubMed PubMed Central Google Scholar
Morinan A, Garratt HM (1985) An improved fluorimetric assay for brain monoamine oxidase. J Pharmacol Methods 13(3):213–223. https://doi.org/10.1016/0160-5402(85)90021-x
Article PubMed CAS Google Scholar
Niraula P (2023) The effect of tobacco particulate matter and its components on monoamine oxidase in brain SH-SY5Y Cells. (PhD). Massey University
Office of Health Improvement and Disparities (2022) Nicotine vaping in England: 2022 evidence update summary. Retrieved from https://www.gov.uk/government/publications/nicotine-vaping-in-england-2022-evidence-update. Accessed 21 Oct 2024
Richardson NR, Roberts DC (1996) Progressive ratio schedules in drug self-administration studies in rats: a method to evaluate reinforcing efficacy. J Neurosci Methods 66(1):1–11. https://doi.org/10.1016/0165-0270(95)00153-0
Article PubMed CAS Google Scholar
Rodgman A, Perfetti TA (2013) The chemical components of tobacco and tobacco smoke (2nd ed.): CRC Press.
Rose JE (2006) Nicotine and nonnicotine factors in cigarette addiction. Psychopharmacology 184(3–4):274–285. https://doi.org/10.1007/s00213-005-0250-x
Article PubMed CAS Google Scholar
Sharama S (2016) Monoamine oxidase inhibitors : clinical pharmacology, benefits, and potential health risks. Nova Science Publishers Inc, New York
Shoaib M, Stolerman IP, Kumar RC (1994) Nicotine-induced place preferences following prior nicotine exposure in rats. Psychopharmacology 113(3–4):445–452. https://doi.org/10.1007/BF02245221
留言 (0)