Organization WH. WHO European Regional Obesity Report 2022. 2022.
Berthoud HR. Homeostatic and non-homeostatic pathways involved in the control of food intake and energy balance. Obes (Silver Spring). 2006;14(Suppl 5):S197–200.
Wise ARP. Brain dopamine and reward. Annu Rev Physiol. 1989;40:191–225.
Robinson TE, Berridge KC, Addiction. Annu Rev Psychol. 2003;54:25–53.
Berridge KC. Liking’ and ‘wanting’ food rewards: brain substrates and roles in eating disorders. Physiol Behav. 2009;97(5):537–50.
Article PubMed PubMed Central Google Scholar
Berridge KC, Kringelbach ML. Pleasure systems in the brain. Neuron. 2015;86(3):646–64.
Article PubMed PubMed Central Google Scholar
Gene-Jack Wang NDV, Logan J, Pappas NR, Wong CT, Zhu W, Netusil N, Fowler JS. Brain dopamine and obesity. Lancet. 2001;357:354–7.
Davis JF, Tracy AL, Schurdak JD, Tschop MH, Lipton JW, Clegg DJ, et al. Exposure to elevated levels of dietary fat attenuates psychostimulant reward and mesolimbic dopamine turnover in the rat. Behav Neurosci. 2008;122(6):1257–63.
Article PubMed PubMed Central Google Scholar
Carlin J, Hill-Smith TE, Lucki I, Reyes TM. Reversal of dopamine system dysfunction in response to high-fat diet. Obes (Silver Spring). 2013;21(12):2513–21.
Johnson PM, Kenny PJ. Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats. Nat Neurosci. 2010;13(5):635–41.
Article PubMed PubMed Central Google Scholar
Stice E, Yokum S, Blum K, Bohon C. Weight gain is associated with reduced striatal response to palatable food. J Neurosci. 2010;30(39):13105–9.
Article PubMed PubMed Central Google Scholar
Sharma S, Hryhorczuk C, Fulton S. Progressive-ratio responding for palatable high-fat and high-sugar food in mice. J Vis Exp. 2012(63):e3754.
Vucetic Z, Kimmel J, Reyes TM. Chronic high-fat diet drives postnatal epigenetic regulation of mu-opioid receptor in the brain. Neuropsychopharmacology. 2011;36(6):1199–206.
Article PubMed PubMed Central Google Scholar
Tracy AL, Wee CJ, Hazeltine GE, Carter RA. Characterization of attenuated food motivation in high-fat diet-induced obesity: critical roles for time on diet and reinforcer familiarity. Physiol Behav. 2015;141:69–77.
Zhang Z, Manson KF, Schiller D, Levy I. Impaired associative learning with food rewards in obese women. Curr Biol. 2014;24(15):1731–6.
Adams WK, Sussman JL, Kaur S, D’Souza AM, Kieffer TJ, Winstanley CA. Long-term, calorie-restricted intake of a high-fat diet in rats reduces impulse control and ventral striatal D2 receptor signalling - two markers of addiction vulnerability. Eur J Neurosci. 2015;42(12):3095–104.
Thaler JP, Yi CX, Schur EA, Guyenet SJ, Hwang BH, Dietrich MO, et al. Obesity is associated with hypothalamic injury in rodents and humans. J Clin Invest. 2012;122(1):153–62.
Fouesnard M, Zoppi J, Petera M, Le Gleau L, Migne C, Devime F, et al. Dietary switch to Western diet induces hypothalamic adaptation associated with gut microbiota dysbiosis in rats. Int J Obes (Lond). 2021;45(6):1271–83.
De Souza CT, Araujo EP, Bordin S, Ashimine R, Zollner RL, Boschero AC, et al. Consumption of a fat-rich diet activates a proinflammatory response and induces insulin resistance in the hypothalamus. Endocrinology. 2005;146(10):4192–9.
Lee CH, Shin SH, Kang GM, Kim S, Kim J, Yu R, et al. Cellular source of hypothalamic macrophage accumulation in diet-induced obesity. J Neuroinflammation. 2019;16(1):221.
Article PubMed PubMed Central Google Scholar
Bocarsly ME, Fasolino M, Kane GA, LaMarca EA, Kirschen GW, Karatsoreos IN, et al. Obesity diminishes synaptic markers, alters microglial morphology, and impairs cognitive function. Proc Natl Acad Sci U S A. 2015;112(51):15731–6.
Article PubMed PubMed Central Google Scholar
Huwart SJP, de Wouters d’Oplinter A, Rastelli M, Van Hul M, de Vos WM, Luquet S et al. Food reward alterations during Obesity Are Associated with inflammation in the striatum in mice: Beneficial effects of Akkermansia muciniphila. Cells. 2022;11(16).
Soto M, Herzog C, Pacheco JA, Fujisaka S, Bullock K, Clish CB, et al. Gut microbiota modulate neurobehavior through changes in brain insulin sensitivity and metabolism. Mol Psychiatry. 2018;23(12):2287–301.
Article PubMed PubMed Central Google Scholar
Molina J, Joaquim A, Bonamin LV, Martins MFM, Kirsten TB, Cardoso CV, et al. Reduced astrocytic expression of GFAP in the offspring of female rats that received hypercaloric diet. Nutr Neurosci. 2020;23(6):411–21.
Ogassawara TB, Joaquim A, Coelho CP, Bernardi MM, Teodorov E, Martins MFM, et al. Food deprivation in F0 generation and hypercaloric diet in F1 generation reduce F2 generation astrogliosis in several brain areas after immune challenge. Int J Dev Neurosci. 2018;64:29–37.
Cani PD, Van Hul M, Lefort C, Depommier C, Rastelli M, Everard A. Microbial regulation of organismal energy homeostasis. Nat Metab. 2019;1(1):34–46.
van de Wouw M, Schellekens H, Dinan TG, Cryan JF. Microbiota-Gut-Brain Axis: modulator of host metabolism and appetite. J Nutr. 2017;147(5):727–45.
de Wouters d’Oplinter A, Huwart SJP, Cani PD, Everard A. Gut microbes and food reward: from the gut to the brain. Front NeuroSci. 2022;16.
Ousey J, Boktor JC, Mazmanian SK. Gut microbiota suppress feeding induced by palatable foods. Curr Biol. 2023;33(1):147–57. e7.
Article PubMed PubMed Central Google Scholar
Kim JS, Williams KC, Kirkland RA, Schade R, Freeman KG, Cawthon CR, et al. The gut-brain axis mediates bacterial driven modulation of reward signaling. Mol Metab. 2023;75:101764.
Article PubMed PubMed Central Google Scholar
Yu KB, Hsiao EY. Roles for the gut microbiota in regulating neuronal feeding circuits. J Clin Invest. 2021;131(10).
Agusti A, Campillo I, Balzano T, Benitez-Paez A, Lopez-Almela I, Romani-Perez M, et al. Bacteroides uniformis CECT 7771 modulates the brain reward response to reduce binge eating and anxiety-like Behavior in Rat. Mol Neurobiol. 2021;58(10):4959–79.
Article PubMed PubMed Central Google Scholar
Fan S, Guo W, Xiao D, Guan M, Liao T, Peng S, et al. Microbiota-gut-brain axis drives overeating disorders. Cell Metab. 2023;35(11):2011–27. e7.
de Wouters d’Oplinter A, Rastelli M, Van Hul M, Delzenne NM, Cani PD, Everard A. Gut microbes participate in food preference alterations during obesity. Gut Microbes. 2021;13(1):1959242.
Article PubMed PubMed Central Google Scholar
de Wouters d’Oplinter A, Verce M, Huwart SJP, Lessard-Lord J, Depommier C, Van Hul M, et al. Obese-associated gut microbes and derived phenolic metabolite as mediators of excessive motivation for food reward. Microbiome. 2023;11(1):94.
Article PubMed PubMed Central Google Scholar
Samulenaite S, Garcia-Blanco A, Mayneris-Perxachs J, Domingo-Rodriguez L, Cabana-Dominguez J, Fernandez-Castillo N et al. Gut microbiota signatures of vulnerability to food addiction in mice and humans. Gut. 2024.
Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56(7):1761–72.
Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes. 2008;57(6):1470–81.
Iram T, Kern F, Kaur A, Myneni S, Morningstar AR, Shin H, et al. Young CSF restores oligodendrogenesis and memory in aged mice via Fgf17. Nature. 2022;605(7910):509–15.
Article PubMed PubMed Central Google Scholar
Denis RG, Joly-Amado A, Webber E, Langlet F, Schaeffer M, Padilla SL, et al. Palatability can drive feeding Independent of AgRP neurons. Cell Metab. 2015;22(4):646–57.
留言 (0)