Soreide K, Sandvik OM, Soreide JA, et al. Global epidemiology of gastrointestinal stromal tumours (GIST): a systematic review of population-based cohort studies. Cancer Epidemiol. 2016;40:39–46. https://doi.org/10.1016/j.canep.2015.10.031.
Serrano C, George S. Gastrointestinal stromal tumor: challenges and opportunities for a new decade. Clin Cancer Res. 2020;26:5078–85. https://doi.org/10.1158/1078-0432.CCR-20-1706.
Article CAS PubMed Google Scholar
DeMatteo RP, Lewis JJ, Leung D, et al. Two hundred gastrointestinal stromal tumors: recurrence patterns and prognostic factors for survival. Ann Surg. 2000;231:51–8. https://doi.org/10.1097/00000658-200001000-00008.
Article CAS PubMed PubMed Central Google Scholar
von Mehren M, Kane JM, Bui MM, et al. NCCN guidelines insights: soft tissue sarcoma, Version 1.2021. J Natl Compr Cancer Netw. 2020;18:1604–12. https://doi.org/10.6004/jnccn.2020.0058.
Casali PG, Blay JY, Abecassis N, et al. Gastrointestinal stromal tumours: ESMO-EURACAN-GENTURIS clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2022;33:20–33. https://doi.org/10.1016/j.annonc.2021.09.005.
Article CAS PubMed Google Scholar
Joensuu H, Eriksson M, Sundby Hall K, et al. One vs three years of adjuvant imatinib for operable gastrointestinal stromal tumor: a randomized trial. JAMA. 2012;307:1265–72. https://doi.org/10.1001/jama.2012.347.
Article CAS PubMed Google Scholar
Wardelmann E, Thomas N, Merkelbach-Bruse S, et al. Acquired resistance to imatinib in gastrointestinal stromal tumours caused by multiple KIT mutations. Lancet Oncol. 2005;6:249–51. https://doi.org/10.1016/S1470-2045(05)70097-8.
Article CAS PubMed Google Scholar
Corless CL, Barnett CM, Heinrich MC. Gastrointestinal stromal tumours: origin and molecular oncology. Nat Rev Cancer. 2011;11:865–78. https://doi.org/10.1038/nrc3143.
Article CAS PubMed Google Scholar
Overholtzer M, Zhang J, Smolen GA, et al. Transforming properties of YAP, a candidate oncogene on the chromosome 11q22 amplicon. Proc Natl Acad Sci USA. 2006;103:12405–10. https://doi.org/10.1073/pnas.0605579103.
Article CAS PubMed PubMed Central Google Scholar
Koo JH, Plouffe SW, Meng Z, et al. Induction of AP-1 by YAP/TAZ contributes to cell proliferation and organ growth. Genes Dev. 2020;34:72–86. https://doi.org/10.1101/gad.331546.119.
Article CAS PubMed PubMed Central Google Scholar
Ou WB, Ni N, Zuo R, et al. Cyclin D1 is a mediator of gastrointestinal stromal tumor KIT-independence. Oncogene. 2019;38:6615–29. https://doi.org/10.1038/s41388-019-0894-3.
Article CAS PubMed Google Scholar
Song S, Honjo S, Jin J, et al. The Hippo coactivator YAP1 mediates EGFR overexpression and confers chemoresistance in esophageal cancer. Clin Cancer Res. 2015;21:2580–90. https://doi.org/10.1158/1078-0432.CCR-14-2191.
Article CAS PubMed PubMed Central Google Scholar
Keren-Paz A, Emmanuel R, Samuels Y. YAP and the drug resistance highway. Nat Genet. 2015;47:193–4. https://doi.org/10.1038/ng.3228.
Article CAS PubMed PubMed Central Google Scholar
Lin L, Sabnis AJ, Chan E, et al. The Hippo effector YAP promotes resistance to RAF- and MEK-targeted cancer therapies. Nat Genet. 2015;47:250–6. https://doi.org/10.1038/ng.3218.
Article CAS PubMed PubMed Central Google Scholar
Chen T, Ni N, Yuan L, et al. Proteasome inhibition suppresses KIT-independent gastrointestinal stromal tumors via targeting Hippo/YAP/cyclin D1 signaling. Front Pharmacol. 2021;12: 686874. https://doi.org/10.3389/fphar.2021.686874.
Article CAS PubMed PubMed Central Google Scholar
Koepp DM, Schaefer LK, Ye X, et al. Phosphorylation-dependent ubiquitination of cyclin E by the SCFFbw7 ubiquitin ligase. Science. 2001;294:173–7. https://doi.org/10.1126/science.1065203.
Article CAS PubMed Google Scholar
Nakayama KI, Nakayama K. Ubiquitin ligases: cell-cycle control and cancer. Nat Rev Cancer. 2006;6:369–81. https://doi.org/10.1038/nrc1881.
Article CAS PubMed Google Scholar
Tu K, Yang W, Li C, et al. Fbxw7 is an independent prognostic marker and induces apoptosis and growth arrest by regulating YAP abundance in hepatocellular carcinoma. Mol Cancer. 2014;13:110. https://doi.org/10.1186/1476-4598-13-110.
Article CAS PubMed PubMed Central Google Scholar
Wang J, Wang H, Peters M, et al. Loss of Fbxw7 synergizes with activated Akt signaling to promote c-Myc dependent cholangiocarcinogenesis. J Hepatol. 2019;71:742–52. https://doi.org/10.1016/j.jhep.2019.05.027.
Article CAS PubMed PubMed Central Google Scholar
Huang KK, Ramnarayanan K, Zhu F, et al. Genomic and epigenomic profiling of high-risk intestinal metaplasia reveals molecular determinants of progression to gastric cancer. Cancer Cell. 2018;33(137–50): e5. https://doi.org/10.1016/j.ccell.2017.11.018.
Koga Y, Iwatsuki M, Yamashita K, et al. The role of FBXW7, a cell-cycle regulator, as a predictive marker of recurrence of gastrointestinal stromal tumors. Gastric Cancer. 2019;22:1100–8. https://doi.org/10.1007/s10120-019-00950-y.
Article CAS PubMed Google Scholar
Wu X, Iwatsuki M, Takaki M, et al. FBXW7 regulates the sensitivity of imatinib in gastrointestinal stromal tumors by targeting MCL1. Gastric Cancer. 2024;27:235–47. https://doi.org/10.1007/s10120-023-01454-6.
Article CAS PubMed Google Scholar
Teranishi R, Takahashi T, Obata Y, et al. Combination of pimitespib (TAS-116) with sunitinib is an effective therapy for imatinib-resistant gastrointestinal stromal tumors. Int J Cancer. 2023;152:2580–93. https://doi.org/10.1002/ijc.34461.
Article CAS PubMed Google Scholar
Therneau T. A package for survival analysis in S. R package version. 2015;2:2014.
Miettinen M, Lasota J. Gastrointestinal stromal tumors: review on morphology, molecular pathology, prognosis, and differential diagnosis. Arch Pathol Lab Med. 2006;130:1466–78. https://doi.org/10.5858/2006-130-1466-GSTROM.
Article CAS PubMed Google Scholar
Blay JY, Perol D, Le Cesne A. Imatinib rechallenge in patients with advanced gastrointestinal stromal tumors. Ann Oncol. 2012;23:1659–65. https://doi.org/10.1093/annonc/mdr622.
Azzolin L, Panciera T, Soligo S, et al. YAP/TAZ incorporation in the beta-catenin destruction complex orchestrates the Wnt response. Cell. 2014;158:157–70. https://doi.org/10.1016/j.cell.2014.06.013.
Article CAS PubMed Google Scholar
Park HW, Kim YC, Yu B, et al. Alternative Wnt signaling activates YAP/TAZ. Cell. 2015;162:780–94. https://doi.org/10.1016/j.cell.2015.07.013.
Article CAS PubMed PubMed Central Google Scholar
Yu FX, Zhao B, Panupinthu N, et al. Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling. Cell. 2012;150:780–91. https://doi.org/10.1016/j.cell.2012.06.037.
留言 (0)