The crosstalk between alternative splicing and circular RNA in cancer: pathogenic insights and therapeutic implications

Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, Kingsmore SF, Schroth GP, Burge CB. Alternative isoform regulation in human tissue transcriptomes. Nature. 2008;456(7221):470–6. https://doi.org/10.1038/nature07509.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wright CJ, Smith CWJ, Jiggins CD. Alternative splicing as a source of phenotypic diversity. Nat Rev Genet. 2022;23(11):697–710. https://doi.org/10.1038/s41576-022-00514-4.

Article  CAS  PubMed  Google Scholar 

Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discov. 2022;12(1):31–46. https://doi.org/10.1158/2159-8290.Cd-21-1059.

Article  CAS  PubMed  Google Scholar 

Bradley RK, Anczuków O. RNA splicing dysregulation and the hallmarks of cancer. Nat Rev Cancer. 2023;23(3):135–55. https://doi.org/10.1038/s41568-022-00541-7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kristensen LS, Jakobsen T, Hager H, Kjems J. The emerging roles of circRNAs in cancer and oncology. Nat Rev Clin Oncol. 2022;19(3):188–206. https://doi.org/10.1038/s41571-021-00585-y.

Article  CAS  PubMed  Google Scholar 

Xu C, Jun E, Okugawa Y, Toiyama Y, Borazanci E, Bolton J, Taketomi A, Kim SC, Shang D, Von Hoff D, et al. A circulating panel of circRNA biomarkers for the noninvasive and early detection of pancreatic ductal adenocarcinoma. Gastroenterology. 2024;166(1):178-190.e116. https://doi.org/10.1053/j.gastro.2023.09.050.

Article  CAS  PubMed  Google Scholar 

Wen N, Peng D, Xiong X, Liu G, Nie G, Wang Y, Xu J, Wang S, Yang S, Tian Y, et al. Cholangiocarcinoma combined with biliary obstruction: an exosomal circRNA signature for diagnosis and early recurrence monitoring. Signal Transduct Target Ther. 2024;9(1):107. https://doi.org/10.1038/s41392-024-01814-3.

Article  CAS  PubMed  Google Scholar 

Zhang XO, Dong R, Zhang Y, Zhang JL, Luo Z, Zhang J, Chen LL, Yang L. Diverse alternative back-splicing and alternative splicing landscape of circular RNAs. Genome Res. 2016;26(9):1277–87. https://doi.org/10.1101/gr.202895.115.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kong Y, Luo Y, Zheng S, Yang J, Zhang D, Zhao Y, Zheng H, An M, Lin Y, Ai L, et al. Mutant KRAS mediates circARFGEF2 biogenesis to promote lymphatic metastasis of pancreatic ductal adenocarcinoma. Cancer Res. 2023;83(18):3077–94. https://doi.org/10.1158/0008-5472.Can-22-3997.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Haselbach D, Komarov I, Agafonov DE, Hartmuth K, Graf B, Dybkov O, Urlaub H, Kastner B, Lührmann R, Stark H. Structure and conformational dynamics of the human spliceosomal B(act) complex. Cell. 2018;172(3):454-464.e411. https://doi.org/10.1016/j.cell.2018.01.010.

Article  CAS  PubMed  Google Scholar 

Kastner B, Will CL, Stark H, Lührmann R. Structural insights into nuclear pre-mRNA splicing in higher eukaryotes. Cold Spring Harb Perspect Biol. 2019. https://doi.org/10.1101/cshperspect.a032417.

Article  PubMed  PubMed Central  Google Scholar 

Li X, Liu S, Zhang L, Issaian A, Hill RC, Espinosa S, Shi S, Cui Y, Kappel K, Das R, et al. A unified mechanism for intron and exon definition and back-splicing. Nature. 2019;573(7774):375–80. https://doi.org/10.1038/s41586-019-1523-6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang H, Zhang J, Harvey SE, Hu X, Cheng C. RNA G-quadruplex secondary structure promotes alternative splicing via the RNA-binding protein hnRNPF. Genes Dev. 2017;31(22):2296–309. https://doi.org/10.1101/gad.305862.117.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang XO, Wang HB, Zhang Y, Lu X, Chen LL, Yang L. Complementary sequence-mediated exon circularization. Cell. 2014;159(1):134–47. https://doi.org/10.1016/j.cell.2014.09.001.

Article  CAS  PubMed  Google Scholar 

Kalinina M, Skvortsov D, Kalmykova S, Ivanov T, Dontsova O, Pervouchine DD. Multiple competing RNA structures dynamically control alternative splicing in the human ATE1 gene. Nucl Acid Res. 2021;49(1):479–90. https://doi.org/10.1093/nar/gkaa1208.

Article  CAS  Google Scholar 

Motta-Mena LB, Heyd F, Lynch KW. Context-dependent regulatory mechanism of the splicing factor hnRNP L. Mol Cell. 2010;37(2):223–34. https://doi.org/10.1016/j.molcel.2009.12.027.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dvinge H, Kim E, Abdel-Wahab O, Bradley RK. RNA splicing factors as oncoproteins and tumour suppressors. Nat Rev Cancer. 2016;16(7):413–30. https://doi.org/10.1038/nrc.2016.51.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu L, Vujovic A, Deshpande NP, Sathe S, Anande G, Chen HTT, Xu J, Minden MD, Yeo GW, Unnikrishnan A, et al. The splicing factor RBM17 drives leukemic stem cell maintenance by evading nonsense-mediated decay of pro-leukemic factors. Nat Commun. 2022;13(1):3833. https://doi.org/10.1038/s41467-022-31155-0.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kahles A, Lehmann KV, Toussaint NC, Hüser M, Stark SG, Sachsenberg T, Stegle O, Kohlbacher O, Sander C, Rätsch G. Comprehensive analysis of alternative splicing across tumors from 8,705 patients. Cancer Cell. 2018;34(2):211-224.e216. https://doi.org/10.1016/j.ccell.2018.07.001.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moore MJ, Wang Q, Kennedy CJ, Silver PA. An alternative splicing network links cell-cycle control to apoptosis. Cell. 2010;142(4):625–36. https://doi.org/10.1016/j.cell.2010.07.019.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kovalak C, Donovan S, Bicknell AA, Metkar M, Moore MJ. Deep sequencing of pre-translational mRNPs reveals hidden flux through evolutionarily conserved alternative splicing nonsense-mediated decay pathways. Genome Biol. 2021;22(1):132. https://doi.org/10.1186/s13059-021-02309-y.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lindeboom RG, Supek F, Lehner B. The rules and impact of nonsense-mediated mRNA decay in human cancers. Nat Genet. 2016;48(10):1112–8. https://doi.org/10.1038/ng.3664.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hoyos LE, Abdel-Wahab O. Cancer-specific splicing changes and the potential for splicing-derived neoantigens. Cancer Cell. 2018;34(2):181–3. https://doi.org/10.1016/j.ccell.2018.07.008.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bigot J, Lalanne AI, Lucibello F, Gueguen P, Houy A, Dayot S, Ganier O, Gilet J, Tosello J, Nemati F, et al. Splicing patterns in SF3B1-mutated uveal melanoma generate shared immunogenic tumor-specific neoepitopes. Cancer Discov. 2021;11(8):1938–51. https://doi.org/10.1158/2159-8290.Cd-20-0555.

Article  CAS  PubMed  Google Scholar 

Brown M, Vabret N. Alternative RNA splicing generates shared clonal neoantigens across different types of cancer. Nat Rev Immunol. 2024. https://doi.org/10.1038/s41577-023-00986-3.

Article  PubMed  Google Scholar 

Chan JJ, Zhang B, Chew XH, Salhi A, Kwok ZH, Lim CY, Desi N, Subramaniam N, Siemens A, Kinanti T, et al. Pan-cancer pervasive upregulation of 3’ UTR splicing drives tumourigenesis. Nat Cell Biol. 2022;24(6):928–39. https://doi.org/10.1038/s41556-022-00913-z.

Article 

留言 (0)

沒有登入
gif