Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, Kingsmore SF, Schroth GP, Burge CB. Alternative isoform regulation in human tissue transcriptomes. Nature. 2008;456(7221):470–6. https://doi.org/10.1038/nature07509.
Article CAS PubMed PubMed Central Google Scholar
Wright CJ, Smith CWJ, Jiggins CD. Alternative splicing as a source of phenotypic diversity. Nat Rev Genet. 2022;23(11):697–710. https://doi.org/10.1038/s41576-022-00514-4.
Article CAS PubMed Google Scholar
Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discov. 2022;12(1):31–46. https://doi.org/10.1158/2159-8290.Cd-21-1059.
Article CAS PubMed Google Scholar
Bradley RK, Anczuków O. RNA splicing dysregulation and the hallmarks of cancer. Nat Rev Cancer. 2023;23(3):135–55. https://doi.org/10.1038/s41568-022-00541-7.
Article CAS PubMed PubMed Central Google Scholar
Kristensen LS, Jakobsen T, Hager H, Kjems J. The emerging roles of circRNAs in cancer and oncology. Nat Rev Clin Oncol. 2022;19(3):188–206. https://doi.org/10.1038/s41571-021-00585-y.
Article CAS PubMed Google Scholar
Xu C, Jun E, Okugawa Y, Toiyama Y, Borazanci E, Bolton J, Taketomi A, Kim SC, Shang D, Von Hoff D, et al. A circulating panel of circRNA biomarkers for the noninvasive and early detection of pancreatic ductal adenocarcinoma. Gastroenterology. 2024;166(1):178-190.e116. https://doi.org/10.1053/j.gastro.2023.09.050.
Article CAS PubMed Google Scholar
Wen N, Peng D, Xiong X, Liu G, Nie G, Wang Y, Xu J, Wang S, Yang S, Tian Y, et al. Cholangiocarcinoma combined with biliary obstruction: an exosomal circRNA signature for diagnosis and early recurrence monitoring. Signal Transduct Target Ther. 2024;9(1):107. https://doi.org/10.1038/s41392-024-01814-3.
Article CAS PubMed Google Scholar
Zhang XO, Dong R, Zhang Y, Zhang JL, Luo Z, Zhang J, Chen LL, Yang L. Diverse alternative back-splicing and alternative splicing landscape of circular RNAs. Genome Res. 2016;26(9):1277–87. https://doi.org/10.1101/gr.202895.115.
Article CAS PubMed PubMed Central Google Scholar
Kong Y, Luo Y, Zheng S, Yang J, Zhang D, Zhao Y, Zheng H, An M, Lin Y, Ai L, et al. Mutant KRAS mediates circARFGEF2 biogenesis to promote lymphatic metastasis of pancreatic ductal adenocarcinoma. Cancer Res. 2023;83(18):3077–94. https://doi.org/10.1158/0008-5472.Can-22-3997.
Article CAS PubMed PubMed Central Google Scholar
Haselbach D, Komarov I, Agafonov DE, Hartmuth K, Graf B, Dybkov O, Urlaub H, Kastner B, Lührmann R, Stark H. Structure and conformational dynamics of the human spliceosomal B(act) complex. Cell. 2018;172(3):454-464.e411. https://doi.org/10.1016/j.cell.2018.01.010.
Article CAS PubMed Google Scholar
Kastner B, Will CL, Stark H, Lührmann R. Structural insights into nuclear pre-mRNA splicing in higher eukaryotes. Cold Spring Harb Perspect Biol. 2019. https://doi.org/10.1101/cshperspect.a032417.
Article PubMed PubMed Central Google Scholar
Li X, Liu S, Zhang L, Issaian A, Hill RC, Espinosa S, Shi S, Cui Y, Kappel K, Das R, et al. A unified mechanism for intron and exon definition and back-splicing. Nature. 2019;573(7774):375–80. https://doi.org/10.1038/s41586-019-1523-6.
Article CAS PubMed PubMed Central Google Scholar
Huang H, Zhang J, Harvey SE, Hu X, Cheng C. RNA G-quadruplex secondary structure promotes alternative splicing via the RNA-binding protein hnRNPF. Genes Dev. 2017;31(22):2296–309. https://doi.org/10.1101/gad.305862.117.
Article CAS PubMed PubMed Central Google Scholar
Zhang XO, Wang HB, Zhang Y, Lu X, Chen LL, Yang L. Complementary sequence-mediated exon circularization. Cell. 2014;159(1):134–47. https://doi.org/10.1016/j.cell.2014.09.001.
Article CAS PubMed Google Scholar
Kalinina M, Skvortsov D, Kalmykova S, Ivanov T, Dontsova O, Pervouchine DD. Multiple competing RNA structures dynamically control alternative splicing in the human ATE1 gene. Nucl Acid Res. 2021;49(1):479–90. https://doi.org/10.1093/nar/gkaa1208.
Motta-Mena LB, Heyd F, Lynch KW. Context-dependent regulatory mechanism of the splicing factor hnRNP L. Mol Cell. 2010;37(2):223–34. https://doi.org/10.1016/j.molcel.2009.12.027.
Article CAS PubMed PubMed Central Google Scholar
Dvinge H, Kim E, Abdel-Wahab O, Bradley RK. RNA splicing factors as oncoproteins and tumour suppressors. Nat Rev Cancer. 2016;16(7):413–30. https://doi.org/10.1038/nrc.2016.51.
Article CAS PubMed PubMed Central Google Scholar
Liu L, Vujovic A, Deshpande NP, Sathe S, Anande G, Chen HTT, Xu J, Minden MD, Yeo GW, Unnikrishnan A, et al. The splicing factor RBM17 drives leukemic stem cell maintenance by evading nonsense-mediated decay of pro-leukemic factors. Nat Commun. 2022;13(1):3833. https://doi.org/10.1038/s41467-022-31155-0.
Article CAS PubMed PubMed Central Google Scholar
Kahles A, Lehmann KV, Toussaint NC, Hüser M, Stark SG, Sachsenberg T, Stegle O, Kohlbacher O, Sander C, Rätsch G. Comprehensive analysis of alternative splicing across tumors from 8,705 patients. Cancer Cell. 2018;34(2):211-224.e216. https://doi.org/10.1016/j.ccell.2018.07.001.
Article CAS PubMed PubMed Central Google Scholar
Moore MJ, Wang Q, Kennedy CJ, Silver PA. An alternative splicing network links cell-cycle control to apoptosis. Cell. 2010;142(4):625–36. https://doi.org/10.1016/j.cell.2010.07.019.
Article CAS PubMed PubMed Central Google Scholar
Kovalak C, Donovan S, Bicknell AA, Metkar M, Moore MJ. Deep sequencing of pre-translational mRNPs reveals hidden flux through evolutionarily conserved alternative splicing nonsense-mediated decay pathways. Genome Biol. 2021;22(1):132. https://doi.org/10.1186/s13059-021-02309-y.
Article CAS PubMed PubMed Central Google Scholar
Lindeboom RG, Supek F, Lehner B. The rules and impact of nonsense-mediated mRNA decay in human cancers. Nat Genet. 2016;48(10):1112–8. https://doi.org/10.1038/ng.3664.
Article CAS PubMed PubMed Central Google Scholar
Hoyos LE, Abdel-Wahab O. Cancer-specific splicing changes and the potential for splicing-derived neoantigens. Cancer Cell. 2018;34(2):181–3. https://doi.org/10.1016/j.ccell.2018.07.008.
Article CAS PubMed PubMed Central Google Scholar
Bigot J, Lalanne AI, Lucibello F, Gueguen P, Houy A, Dayot S, Ganier O, Gilet J, Tosello J, Nemati F, et al. Splicing patterns in SF3B1-mutated uveal melanoma generate shared immunogenic tumor-specific neoepitopes. Cancer Discov. 2021;11(8):1938–51. https://doi.org/10.1158/2159-8290.Cd-20-0555.
Article CAS PubMed Google Scholar
Brown M, Vabret N. Alternative RNA splicing generates shared clonal neoantigens across different types of cancer. Nat Rev Immunol. 2024. https://doi.org/10.1038/s41577-023-00986-3.
Chan JJ, Zhang B, Chew XH, Salhi A, Kwok ZH, Lim CY, Desi N, Subramaniam N, Siemens A, Kinanti T, et al. Pan-cancer pervasive upregulation of 3’ UTR splicing drives tumourigenesis. Nat Cell Biol. 2022;24(6):928–39. https://doi.org/10.1038/s41556-022-00913-z.
留言 (0)