Multifunctional acyltransferase HBO1: a key regulatory factor for cellular functions

Feng Y, Vlassis A, Roques C, Lalonde ME, González-Aguilera C, Lambert JP, Lee SB, Zhao X, Alabert C, Johansen JV, et al. BRPF3-HBO1 regulates replication origin activation and histone H3K14 acetylation. EMBO J. 2016;35:176–92. https://doi.org/10.15252/embj.201591293.

Article  CAS  PubMed  Google Scholar 

Han J, Lachance C, Ricketts MD, McCullough CE, Gerace M, Black BE, Côté J, Marmorstein R. The scaffolding protein JADE1 physically links the acetyltransferase subunit HBO1 with its histone H3–H4 substrate. J Biol Chem. 2018;293:4498–509. https://doi.org/10.1074/jbc.RA117.000677.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Havasi A, Haegele JA, Gall JM, Blackmon S, Ichimura T, Bonegio RG, Panchenko MV. Histone acetyl transferase (HAT) HBO1 and JADE1 in epithelial cell regeneration. Am J Pathol. 2013;182:152–62. https://doi.org/10.1016/j.ajpath.2012.09.017.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Iizuka M, Stillman B. Histone acetyltransferase HBO1 interacts with the ORC1 subunit of the human initiator protein. J Biol Chem. 1999;274:23027–34. https://doi.org/10.1074/jbc.274.33.23027.

Article  CAS  PubMed  Google Scholar 

Burke TW, Cook JG, Asano M, Nevins JR. Replication factors MCM2 and ORC1 interact with the histone acetyltransferase HBO1. J Biol Chem. 2001;276:15397–408. https://doi.org/10.1074/jbc.M011556200.

Article  CAS  PubMed  Google Scholar 

Sharma M, Zarnegar M, Li X, Lim B, Sun Z. Androgen receptor interacts with a novel MYST protein, HBO1. J Biol Chem. 2000;275:35200–8. https://doi.org/10.1074/jbc.M004838200.

Article  CAS  PubMed  Google Scholar 

Contzler R, Regamey A, Favre B, Roger T, Hohl D, Huber M. Histone acetyltransferase HBO1 inhibits NF-kappaB activity by coactivator sequestration. Biochem Biophys Res Commun. 2006;350:208–13. https://doi.org/10.1016/j.bbrc.2006.09.030.

Article  CAS  PubMed  Google Scholar 

Iizuka M, Sarmento OF, Sekiya T, Scrable H, Allis CD, Smith MM. Hbo1 links p53-dependent stress signaling to DNA replication licensing. Mol Cell Biol. 2008;28:140–53. https://doi.org/10.1128/mcb.00662-07.

Article  CAS  PubMed  Google Scholar 

Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, Olsen JV, Mann M. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science. 2009;325:834–40. https://doi.org/10.1126/science.1175371.

Article  CAS  PubMed  Google Scholar 

Shvedunova M, Akhtar A. Modulation of cellular processes by histone and non-histone protein acetylation. Nat Rev Mol Cell Biol. 2022;23:329–49. https://doi.org/10.1038/s41580-021-00441-y.

Article  CAS  PubMed  Google Scholar 

Iizuka M, Takahashi Y, Mizzen CA, Cook RG, Fujita M, Allis CD, Frierson HF Jr, Fukusato T, Smith MM. Histone acetyltransferase Hbo1: catalytic activity, cellular abundance, and links to primary cancers. Gene. 2009;436:108–14. https://doi.org/10.1016/j.gene.2009.01.020.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Doyon Y, Cayrou C, Ullah M, Landry AJ, Côté V, Selleck W, Lane WS, Tan S, Yang XJ, Côté J. ING tumor suppressor proteins are critical regulators of chromatin acetylation required for genome expression and perpetuation. Mol Cell. 2006;21:51–64. https://doi.org/10.1016/j.molcel.2005.12.007.

Article  CAS  PubMed  Google Scholar 

Hung T, Binda O, Champagne KS, Kuo AJ, Johnson K, Chang HY, Simon MD, Kutateladze TG, Gozani O. ING4 mediates crosstalk between histone H3 K4 trimethylation and H3 acetylation to attenuate cellular transformation. Mol Cell. 2009;33:248–56. https://doi.org/10.1016/j.molcel.2008.12.016.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Avvakumov N, Lalonde ME, Saksouk N, Paquet E, Glass KC, Landry AJ, Doyon Y, Cayrou C, Robitaille GA, Richard DE, et al. Conserved molecular interactions within the HBO1 acetyltransferase complexes regulate cell proliferation. Mol Cell Biol. 2012;32:689–703. https://doi.org/10.1128/mcb.06455-11.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shilatifard A. Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression. Annu Rev Biochem. 2006;75:243–69. https://doi.org/10.1146/annurev.biochem.75.103004.142422.

Article  CAS  PubMed  Google Scholar 

Saksouk N, Avvakumov N, Champagne KS, Hung T, Doyon Y, Cayrou C, Paquet E, Ullah M, Landry AJ, Côté V, et al. HBO1 HAT complexes target chromatin throughout gene coding regions via multiple PHD finger interactions with histone H3 tail. Mol Cell. 2009;33:257–65. https://doi.org/10.1016/j.molcel.2009.01.007.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lalonde ME, Avvakumov N, Glass KC, Joncas FH, Saksouk N, Holliday M, Paquet E, Yan K, Tong Q, Klein BJ, et al. Exchange of associated factors directs a switch in HBO1 acetyltransferase histone tail specificity. Genes Dev. 2013;27:2009–24. https://doi.org/10.1101/gad.223396.113.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ormaza G, Rodríguez JA, Ibáñez de Opakua A, Merino N, Villate M, Gorroño I, Rábano M, Palmero I, Vilaseca M, Kypta R, et al. The tumor suppressor ING5 is a dimeric, bivalent recognition molecule of the histone H3K4me3 mark. J Mol Biol. 2019;431:2298–319. https://doi.org/10.1016/j.jmb.2019.04.018.

Article  CAS  PubMed  Google Scholar 

Ormaza G, Medagli B, Ibáñez de Opakua A, Rodríguez JA, Merino N, Villate M, Onesti S, Blanco FJ. The tumor suppressor inhibitor of growth 4 binds double-stranded DNA through its disordered central region. FEBS Lett. 2017;591:425–32. https://doi.org/10.1002/1873-3468.12514.

Article  CAS  PubMed  Google Scholar 

Mishima Y, Miyagi S, Saraya A, Negishi M, Endoh M, Endo TA, Toyoda T, Shinga J, Katsumoto T, Chiba T, et al. The Hbo1-Brd1/Brpf2 complex is responsible for global acetylation of H3K14 and required for fetal liver erythropoiesis. Blood. 2011;118:2443–53. https://doi.org/10.1182/blood-2011-01-331892.

Article  CAS  PubMed  Google Scholar 

Tao Y, Zhong C, Zhu J, Xu S, Ding J. Structural and mechanistic insights into regulation of HBO1 histone acetyltransferase activity by BRPF2. Nucleic Acids Res. 2017;45:5707–19. https://doi.org/10.1093/nar/gkx142.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yan K, You L, Degerny C, Ghorbani M, Liu X, Chen L, Li L, Miao D, Yang XJ. The chromatin regulator BRPF3 preferentially activates the HBO1 acetyltransferase but is dispensable for mouse development and survival. J Biol Chem. 2016;291:2647–63. https://doi.org/10.1074/jbc.M115.703041.

Article  CAS  PubMed  Google Scholar 

Foy RL, Song IY, Chitalia VC, Cohen HT, Saksouk N, Cayrou C, Vaziri C, Côté J, Panchenko MV. Role of Jade-1 in the histone acetyltransferase (HAT) HBO1 complex. J Biol Chem. 2008;283:28817–26. https://doi.org/10.1074/jbc.M801407200.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Siriwardana NS, Meyer R, Havasi A, Dominguez I, Panchenko MV. Cell cycle-dependent chromatin shuttling of HBO1-JADE1 histone acetyl transferase (HAT) complex. Cell Cycle. 2014;13:1885–901. https://doi.org/10.4161/cc.28759.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Panchenko MV, Zhou MI, Cohen HT. von Hippel-Lindau partner Jade-1 is a transcriptional co-activator associated with histone acetyltransferase activity. J Biol Chem. 2004;279:56032–41. https://doi.org/10.1074/jbc.M410487200.

Article  CAS  PubMed  Google Scholar 

Ullah M, Pelletier N, Xiao L, Zhao SP, Wang K, Degerny C, Tahmasebi S, Cayrou C, Doyon Y, Goh SL, et

留言 (0)

沒有登入
gif