Targeting DDX3X eliminates leukemia stem cells in chronic myeloid leukemia by blocking NT5DC2 mRNA translation

Cortes J, Pavlovsky C, Saussele S. Chronic myeloid leukaemia. Lancet. 2021;398:1914–26.

Article  CAS  PubMed  Google Scholar 

Bourne G, Bhatia R, Jamy O. Treatment-free remission in chronic myeloid leukemia. J Clin Med. 2024;13:2567.

Article  PubMed  PubMed Central  Google Scholar 

Ito K, Ito K. Leukemia stem cells as a potential target to achieve therapy-free remission in chronic myeloid leukemia. Cancers. 2021;13:5822.

Article  PubMed  PubMed Central  Google Scholar 

Zhou H, Xu R. Leukemia stem cells: the root of chronic myeloid leukemia. Protein Cell. 2015;6:403–12.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Corbin AS, Agarwal A, Loriaux M, Cortes J, Deininger MW, Druker BJ. Human chronic myeloid leukemia stem cells are insensitive to imatinib despite inhibition of BCR-ABL activity. J Clin Invest. 2011;121:396–409.

Article  CAS  PubMed  Google Scholar 

Hamilton A, Helgason GV, Schemionek M, Zhang B, Myssina S, Allan EK, et al. Chronic myeloid leukemia stem cells are not dependent on Bcr-Abl kinase activity for their survival. Blood. 2012;119:1501–10.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Houshmand M, Simonetti G, Circosta P, Gaidano V, Cignetti A, Martinelli G, et al. Chronic myeloid leukemia stem cells. Leukemia. 2019;33:1543–56.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chomel JC, Bonnet ML, Sorel N, Bertrand A, Meunier MC, Fichelson S, et al. Leukemic stem cell persistence in chronic myeloid leukemia patients with sustained undetectable molecular residual disease. Blood. 2011;118:3657–60.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chu S, McDonald T, Lin A, Chakraborty S, Huang Q, Snyder DS, et al. Persistence of leukemia stem cells in chronic myelogenous leukemia patients in prolonged remission with imatinib treatment. Blood. 2011;118:5565–72.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao C, Blum J, Chen A, Kwon HY, Jung SH, Cook JM, et al. Loss of β-catenin impairs the renewal of normal and CML stem cells in vivo. Cancer Cell. 2007;12:528–41.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao C, Chen A, Jamieson CH, Fereshteh M, Abrahamsson A, Blum J, et al. Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukaemia. Nature. 2009;458:776–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Allan EK, Holyoake TL, Craig AR, Jørgensen HG. Omacetaxine may have a role in chronic myeloid leukaemia eradication through downregulation of Mcl-1 and induction of apoptosis in stem/progenitor cells. Leukemia. 2011;25:985–94.

Article  CAS  PubMed  Google Scholar 

Carter BZ, Mak PY, Mu H, Zhou H, Mak DH, Schober W, et al. Combined targeting of BCL-2 and BCR-ABL tyrosine kinase eradicates chronic myeloid leukemia stem cells. Sci Transl Med. 2016;8:355ra117.

Article  PubMed  PubMed Central  Google Scholar 

Kuntz EM, Baquero P, Michie AM, Dunn K, Tardito S, Holyoake TL, et al. Targeting mitochondrial oxidative phosphorylation eradicates therapy-resistant chronic myeloid leukemia stem cells. Nat Med. 2017;23:1234–40.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rattigan KM, Brabcova Z, Sarnello D, Zarou MM. Pyruvate anaplerosis is a targetable vulnerability in persistent leukaemic stem cells. Nat Commun. 2023;14:4634.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rattigan KM, Zarou MM. Arginine dependency is a therapeutically exploitable vulnerability in chronic myeloid leukaemic stem cells. EMBO Rep. 2023;24:e56279.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jin Y, Zhou J, Xu F, Jin B, Cui L, Wang Y, et al. Targeting methyltransferase PRMT5 eliminates leukemia stem cells in chronic myelogenous leukemia. J Clin Invest. 2016;126:3961–80.

Article  PubMed  PubMed Central  Google Scholar 

Li L, Wang L, Li L, Wang Z, Ho Y, McDonald T, et al. Activation of p53 by SIRT1 inhibition enhances elimination of CML leukemia stem cells in combination with imatinib. Cancer Cell. 2012;21:266–81.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu C, Zou W, Nie D, Li S, Duan C, Zhou M, et al. Loss of PRMT7 reprograms glycine metabolism to selectively eradicate leukemia stem cells in CML. Cell Metab. 2022;34:818–835.e817.

Article  PubMed  Google Scholar 

Xie H, Peng C, Huang J, Li BE, Kim W, Smith EC, et al. Chronic myelogenous leukemia-initiating cells require polycomb group protein EZH2. Cancer Discov. 2016;6:1237–47.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bührer ED, Amrein MA. Splenic red pulp macrophages provide a niche for CML stem cells and induce therapy resistance. Leukemia. 2022;36:2634–46.

Article  PubMed  PubMed Central  Google Scholar 

Dolinska M, Cai H. Characterization of the bone marrow niche in patients with chronic myeloid leukemia identifies CXCL14 as a new therapeutic option. Blood. 2023;142:73–89.

CAS  PubMed  PubMed Central  Google Scholar 

Yao Y, Li F, Huang J, Jin J, Wang H. Leukemia stem cell-bone marrow microenvironment interplay in acute myeloid leukemia development. Exp Hematol Oncol. 2021;10:39.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mo J, Liang H, Su C, Li P, Chen J, Zhang B. DDX3X: structure, physiologic functions and cancer. Mol Cancer. 2021;20:38.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Calviello L, Venkataramanan S. DDX3 depletion represses translation of mRNAs with complex 5′ UTRs. Nucleic Acids Res. 2021;49:5336–50.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bol GM, Vesuna F, Xie M, Zeng J, Aziz K, Gandhi N, et al. Targeting DDX3 with a small molecule inhibitor for lung cancer therapy. EMBO Mol Med. 2015;7:648–69.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Botlagunta M, Vesuna F, Mironchik Y, Raman A, Lisok A, Winnard P Jr., et al. Oncogenic role of DDX3 in breast cancer biogenesis. Oncogene. 2008;27:3912–22.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wilky BA, Kim C, McCarty G, Montgomery EA, Kammers K, DeVine LR, et al. RNA helicase DDX3: a novel therapeutic target in Ewing sarcoma. Oncogene. 2016;35:2574–83.

Article  CAS  PubMed  Google Scholar 

Xie M, Vesuna F, Tantravedi S, Bol GM, Heerma van Voss MR, Nugent K, et al. RK-33 radiosensitizes prostate cancer cells by blocking the RNA helicase DDX3. Cancer Res. 2016;76:6340–50.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif